In the context of the circular economy, the development of innovative and low-carbon concrete that incorporates different kinds of waste materials is gaining attention among the research community, regulatory agencies, and policymakers. These materials can be incorporated into concrete mixtures as aggregates or as fillers for improvement of product properties. This study aims to identify reliable designs for biochar-augmented cementitious products and general applications through technical, environmental, and economic assessments.
View Article and Find Full Text PDFStabilization/solidification (S/S) is becoming increasingly important, as it allows the remediation of contaminated sediments and their recovery into materials for civil engineering. This research proposes a cement-free cold granulation process for manufactured low-cost aggregates from marine sediments contaminated with organic compounds and metals. After the chemo-physical characterization of the study materials, two mix designs were prepared in a rotary plate granulator by adding two industrial by-products as geopolymer precursors, coal fly ash (CFA) and Blast Furnace Slag (BFS), but also alkaline activation solutions, water, and a fluidizer.
View Article and Find Full Text PDFOxidative extraction has become an economically viable option for recycling lithium (Li) from spent lithium iron phosphate (LiFePO) batteries. In this study, the releases behaviour of Li from spent LiFePO batteries under different oxidizing conditions was investigated with sodium hypochlorite (NaClO) as the solid oxidant. We revealed that, due to the intervention of graphitic carbon, the generated species of Li in mechanochemical oxidation (NaClO:LiFePO at a molar ratio of 2:1, 5 min, and 600 rpm) was lithium carbonate (LiCO).
View Article and Find Full Text PDFNet carbon management of agro-residues has been an important pathway for reducing the environmental burdens of agricultural production. Converting agro-residues into biochar through pyrolysis is a prominent management strategy for achieving carbon neutrality in a circular economy, meeting both environmental and social concerns. Based on the latest studies, this study critically analyzes the life cycle assessment (LCA) of biochar production from different agro-residues and compares typical technologies for biochar production.
View Article and Find Full Text PDFThe topic of sustainability of reinforced concrete structures is strictly related with their durability in aggressive environments. In particular, at equal environmental impact, the higher the durability of construction materials, the higher the sustainability. The present review deals with the possible strategies aimed at producing sustainable and durable reinforced concrete structures in different environments.
View Article and Find Full Text PDFContaminated sediments can pose long-term risks to human beings and ecosystems as they accumulate inorganic and organic contaminants becoming a sink and source of pollution. Compared to ex-situ technologies (i.e.
View Article and Find Full Text PDFRoutine waterway dredging activities generate huge volumes of dredged sediment. The remediation of dredged contaminated sediment is a worldwide challenge. Novel and sustainable ex-situ remediation technologies for contaminated sediment have been developed and adopted in recent years.
View Article and Find Full Text PDFThis paper proposes a holistic approach to connect anthropogenic impacts to environmental remediation solutions. The eDPSIR (engineered-Drivers-Pressures-States-Impacts-Responses) framework aims at supporting the decision-maker in designing technological solutions for a contaminated coastal area, where the natural matrices need to be cleaned up. The eDPSIR is characterized by cause-effect relationships that are operationally implemented through three multidisciplinary toolboxes: (i) Toolbox 1, to connect driving forces with pressures, classifying the state of the system and allowing the identification of target contaminants and the extent of contamination; (ii) Toolbox 2, to quantify bioaccumulation also by identifying corresponding areas; (iii) Toolbox 3, to identify the most suitable remediation solutions for previously identified contaminated areas, named contamination scenarios.
View Article and Find Full Text PDFIn this paper, environmentally sustainable cement mortars were prepared with end-of-life tyre rubber (TR) and recycled waste porous glass (PG) as aggregates in order to obtain lightweight products characterized by renewable and not-pretreated materials specifically for indoor applications. The secondary raw materials were added as partial and/or total replacement of the conventional sand aggregate. The resulting lightweight specimens were characterized by rheological, mechanical, thermal, microstructural and wettability tests.
View Article and Find Full Text PDF