Publications by authors named "Claudia Kuntner"

Since the discovery of cisplatin's antitumoral activity and its approval as an anticancer drug, significant efforts have been made to enhance its physiological stability and anticancer efficacy and to reduce its side effects. With the rapid development of targeted and personalized therapies, and the promising theranostic approach, platinum drugs have found new opportunities in more sophisticated systems. Theranostic agents combine diagnostic and therapeutic moieties in one scaffold, enabling simultaneous disease monitoring, therapy delivery, response tracking, and treatment efficacy evaluation.

View Article and Find Full Text PDF

Cholangiocarcinoma (CCA) is a type of primary liver cancer originating from the biliary tract epithelium, characterized by limited treatment options for advanced cases and low survival rates. This study aimed to establish an orthotopic mouse model for CCA and monitor tumor growth using PET/MR imaging. Murine CCA cells were implanted into the liver lobe of male C57BL/6J mice.

View Article and Find Full Text PDF

The aim of this guideline is to provide recommendations for the implementation of an effective and efficient quality control (QC) programme for SPECT and PET systems in a preclinical imaging lab. These recommendations aim to strengthen the translational power of preclinical imaging results obtained using preclinical SPECT and PET. As for clinical imaging, reliability, reproducibility, and repeatability are essential when groups of animals are used in a longitudinal imaging experiment.

View Article and Find Full Text PDF

Purpose: Preclinical imaging, with translational potential, lacks a standardized method for defining volumes of interest (VOIs), impacting data reproducibility. The aim of this study was to determine the interobserver variability of VOI sizes and standard uptake values (SUV and SUV) of different organs using the same [F]FDG-PET and PET/CT datasets analyzed by multiple observers. In addition, the effect of a standardized analysis approach was evaluated.

View Article and Find Full Text PDF

Nanodiamonds (NDs) are emerging as a novel nanoparticle class with growing interest in medical applications. The surface coating of NDs can be modified by attaching binding ligands or imaging probes, turning them into multi-modal targeting agents. In this investigation, we assessed the targeting efficacy of octreotide-functionalized Ga-radiolabelled NDs for cancer imaging and compared it with the tumor uptake using [Ga]Ga-DOTA-TOC.

View Article and Find Full Text PDF

Additive manufacturing and 3D printing allow for the design and rapid production of radiographic phantoms for X-ray imaging, including CT. These are used for numerous purposes, such as patient simulation, optimization of imaging procedures and dose levels, system evaluation and quality assurance. However, standard 3D printing polymers do not mimic X-ray attenuation properties of tissues like soft, adipose, lung or bone tissue, and standard materials like liquid water.

View Article and Find Full Text PDF

Transporter-mediated drug-drug interactions (DDIs) are of concern in antimicrobial drug development, as they can have serious safety consequences. We used positron emission tomography (PET) imaging-based pharmacokinetic (PK) analysis to assess the effect of different drugs, which may cause transporter-mediated DDIs, on the tissue distribution and excretion of [F]ciprofloxacin as a radiolabeled model antimicrobial drug. Mice underwent PET scans after intravenous injection of [F]ciprofloxacin, without and with pretreatment with either probenecid (150 mg/kg), cimetidine (50 mg/kg), or pyrimethamine (5 mg/kg).

View Article and Find Full Text PDF

Purpose: Nanodiamonds (NDs) represent a new class of nanoparticles and have gained increasing interest in medical applications. Modifying the surface coating by attaching binding ligands or imaging probes can transform NDs into multi-modal targeting probes. This study evaluated the biokinetics and biodistribution of Ga-radiolabelled NDs in a xenograft model.

View Article and Find Full Text PDF

Nanodiamonds (NDs) have high potential as a drug carrier and in combination with nitrogen vacancies (NV centers) for highly sensitive MR-imaging after hyperpolarization. However, little remains known about their physiological properties in vivo. PET imaging allows further evaluation due to its quantitative properties and high sensitivity.

View Article and Find Full Text PDF
Article Synopsis
  • The aim of the research is to evaluate the current state of standardization in preclinical imaging practices, amidst previously established resources intended to ensure high-quality imaging data.
  • A survey distributed by the STANDARD group during the European Molecular Imaging Meeting (EMIM) 2022 revealed that 47% of respondents lack quality control guidelines and highlighted significant inconsistencies in imaging data acquisition and processing methods.
  • The findings underscore a persistent challenge in standardizing preclinical imaging, which limits its potential to effectively translate research into clinical applications.
View Article and Find Full Text PDF

Multidrug resistance-associated protein 1 (MRP1, encoded by the gene) may contribute to the clearance of amyloid-beta (Aβ) peptides from the brain into the blood and stimulation of MRP1 transport activity may be a therapeutic approach to enhance brain Aβ clearance. In this study, we assessed the effect of thiethylperazine, an antiemetic drug which was shown to stimulate MRP1 activity in vitro and to decrease Aβ load in a rapid β-amyloidosis mouse model (APP/PS1-21), on MRP1 transport activity by means of positron emission tomography (PET) imaging with the MRP1 tracer 6-bromo-7-[C]methylpurine. Groups of wild-type, APP/PS1-21 and mice underwent PET scans before and after a 5-day oral treatment period with thiethylperazine (15 mg/kg, once daily).

View Article and Find Full Text PDF

Background: To better understand the etiology and pathomechanisms of Alzheimer's disease, several transgenic animal models that overexpress human tau or human amyloid-beta (Aβ) have been developed. In the present study, we generated a novel transgenic rat model by cross-breeding amyloid precursor protein (APP) rats with tau rats. We characterized this model by performing positron emission tomography scans combined with immunofluorescent labeling and cerebrospinal fluid analyses.

View Article and Find Full Text PDF

P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) are co-localized at the blood-brain barrier, where they display functional redundancy to restrict the brain distribution of dual P-gp/BCRP substrate drugs. We used positron emission tomography (PET) with the metabolically stable P-gp/BCRP substrates [C]tariquidar, [C]erlotinib, and [C]elacridar to assess whether a similar functional redundancy as at the BBB exists in the liver, where both transporters mediate the biliary excretion of drugs. Wild-type, , , and mice underwent dynamic whole-body PET scans after i.

View Article and Find Full Text PDF

Epigenetics plays a vital role in regulating gene expression and determining the specific phenotypes of eukaryotic cells. Histone deacetylases (HDACs) are important epigenetic regulatory proteins effecting multiple biological functions. Particularly, HDAC6 has become a promising anti-cancer drug target because of its regulation of cell mobility, protein trafficking, degradation of misfolded proteins, cell growth, apoptosis, and metastasis.

View Article and Find Full Text PDF

Introduction: Tau deposition is one of the hallmarks of Alzheimer's disease (AD) and can be visualized and quantified using [F]THK-5317 together with kinetic modeling. To determine the feasibility of this approach, we measured blood/plasma pharmacokinetics and radiotracer metabolism in female and male rats.

Methods: Female and male rats (n = 11-12) were cannulated via the femoral artery for continuous blood sampling.

View Article and Find Full Text PDF
Article Synopsis
  • Previous research suggests that multidrug resistance-associated protein 1 (ABCC1) may play a role in clearing beta-amyloid (Aβ) from the brain, which is important for understanding Alzheimer's disease.
  • In this study, PET scans were used to assess ABCC1 activity in both an Alzheimer's mouse model (APP/PS1-21) and normal mice at different ages, leading to some significant findings after using an ABCC1 inhibitor (MK571).
  • The results indicated that older APP/PS1-21 mice had increased ABCC1 activity compared to their wild-type counterparts, implying a potential upregulation of ABCC1 as a protective response against oxidative stress in the context of beta-amyloidosis.
View Article and Find Full Text PDF

The standardization of preclinical imaging is a key factor to ensure the reliability, reproducibility, validity, and translatability of preclinical data. Preclinical standardization has been slowly progressing in recent years and has mainly been performed within a single institution, whereas little has been done in regards to multicenter standardization between facilities. This study aimed to investigate the comparability among preclinical imaging facilities in terms of PET data acquisition and analysis.

View Article and Find Full Text PDF

PET imaging has been, and continues to be, an evolving diagnostic technology. In recent years, the modernizing digital landscape has opened new opportunities for data-driven innovation. One such facet has been data-driven motion correction (DDMC) in PET.

View Article and Find Full Text PDF

Purpose: Multidrug resistance-associated proteins (MRPs) mediate the hepatobiliary and renal excretion of many drugs and drug conjugates. The positron emission tomography (PET) tracer 6-bromo-7-[C]methylpurine is rapidly converted in tissues by glutathione-S-transferases into its glutathione conjugate, and has been used to measure the activity of Abcc1 in the brain and the lungs of mice. Aim of this work was to investigate if the activity of MRPs in excretory organs can be measured with 6-bromo-7-[C]methylpurine.

View Article and Find Full Text PDF

Ko143 is a reference inhibitor of the adenosine triphosphate-binding cassette (ABC) transporter breast cancer resistance protein (humans: ABCG2, rodents: Abcg2) for in vitro and in vivo use. Previous in vitro data indicate that Ko143 binds specifically to ABCG2/Abcg2, suggesting a potential utility of Ko143 as a positron emission tomography (PET) tracer to assess the density (abundance) of ABCG2 in different tissues. In this work we radiolabeled Ko143 with carbon-11 (C) and performed small-animal PET experiments with [C]Ko143 in wild-type, Abcg2, Abcb1a/b and Abcb1a/bAbcg2 mice to assess the influence of Abcg2 and Abcb1a/b on tissue distribution and excretion of [C]Ko143.

View Article and Find Full Text PDF

In recent years, radiofluorinated alkyl azides have been reported for click radiolabeling and pretargeted PET imaging, but only little is known about the biodistribution and metabolism of these compounds. In this work, we present a significantly improved procedure for the synthesis of [F]fluoroethyl azide and reinvestigated this radiolabeled probe in detail showing poor stability and very restricted suitability for in vivo application. Therefore, modified low-molecular-weight [F]fluoroalkyl azides were developed.

View Article and Find Full Text PDF

Introduction: [C]Erlotinib PET has shown promise to distinguish non-small cell lung cancer (NSCLC) tumors harboring the activating epidermal growth factor receptor (EGFR) mutation delE746-A750 from tumors with wild-type EGFR. To assess the suitability of [C]erlotinib PET to detect the emergence of acquired erlotinib resistance in initially erlotinib-responsive tumors, we performed in vitro binding and PET experiments in mice bearing tumor xenografts using a range of different cancer cells, which were erlotinib-sensitive or exhibited clinically relevant resistance mechanisms to erlotinib.

Methods: The following cell lines were used for in vitro binding and PET experiments: the epidermoid carcinoma cell line A-431 (erlotinib-sensitive, wild-type EGFR) and the three NSCLC cell lines HCC827 (erlotinib-sensitive, delE746-A750), HCC827 (erlotinib-resistant, delE746-A750 and T790M) and HCC827 (erlotinib-resistant, delE746-A750 and MET amplification).

View Article and Find Full Text PDF

Introduction: In recent years extra-corporal application of boron neutron capture therapy (BNCT) was evaluated for liver primary tumors or liver metastases. A prerequisite for such a high-risk procedure is proof of preferential delivery and high uptake of a B-pharmaceutical in liver malignancies. In this work we evaluated in a preclinical tumor model if [F]FBPA tissue distribution measured with PET is able to predict the tissue distribution of [B]L-BPA.

View Article and Find Full Text PDF

Routine quality control is a critical aspect of properly maintaining high-performance small animal imaging instrumentation. A robust quality control program helps produce more reliable data both for academic purposes and as proof of system performance for contract imaging work. For preclinical imaging laboratories, the combination of costs and available resources often limits their ability to produce efficient and effective quality control programs.

View Article and Find Full Text PDF