Publications by authors named "Claudia Holody"

Iron deficiency (ID) is common during gestation and early infancy and can alter developmental trajectories with lasting consequences on cardiovascular health. Iron plays a critical role in systemic oxygen transport (via hemoglobin) and aerobic respiration (as a component of mitochondrial complexes). Perinatal ID has been shown to cause cardiac dysfunction in neonates, but the mechanisms underlying these changes have not been characterized.

View Article and Find Full Text PDF

Iron deficiency (ID) is common during gestation and in early infancy and has been shown to adversely affect cardiac development and function, which could lead to lasting cardiovascular consequences. Ketone supplementation has been shown to confer cardioprotective effects in numerous disease models. Here, we tested the hypothesis that maternal ketone supplementation during gestation would mitigate cardiac dysfunction in ID neonates.

View Article and Find Full Text PDF

Mitochondria play a key role in aging. Here, we measured integrated mitochondrial functions in experimentally evolved lines of the seed beetle Acanthoscelides obtectus that were selected for early (E) or late (L) reproduction for nearly 4 decades. The 2 lines have markedly different lifespans (8 days and 13 days in the E and L lines, respectively).

View Article and Find Full Text PDF

Prenatal hypoxia is associated with placental oxidative stress, leading to impaired fetal growth and an increased risk of cardiovascular disease in the adult offspring; however, the mechanisms are unknown. Alterations in mitochondrial function may result in impaired cardiac function in offspring. In this study, we hypothesized that cardiac mitochondrial function is impaired in adult offspring exposed to intrauterine hypoxia, which can be prevented by placental treatment with a nanoparticle-encapsulated mitochondrial antioxidant (nMitoQ).

View Article and Find Full Text PDF

Iron deficiency (ID) is common during gestation and in early infancy and can alter developmental trajectories with lasting consequences on cardiovascular health. While the effects of ID and anemia on the mature heart are well documented, comparatively little is known about their effects and mechanisms on offspring cardiac development and function in the neonatal period. Female Sprague-Dawley rats were fed an iron-restricted or iron-replete diet before and during pregnancy.

View Article and Find Full Text PDF

Long-term alterations in kidney structure and function have been observed in offspring exposed to perinatal stressors such as iron deficiency (ID), albeit the mechanisms underlying these changes remain unclear. Here, we assessed how perinatal ID alters renal vitamin A metabolism, an important contributor to nephrogenesis, in the developing kidney. Pregnant Sprague Dawley rats were fed either an iron-restricted or -replete diet throughout gestation, and offspring were studied on postnatal day (PD)1 and 28.

View Article and Find Full Text PDF

For ectothermic species, adaptation to thermal changes is of critical importance. Mitochondrial oxidative phosphorylation (OXPHOS), which leverages multiple electron pathways to produce energy needed for survival, is among the crucial metabolic processes impacted by temperature. Our aim in this study was to identify how changes in temperature affect the less-studied electron transferring flavoprotein pathway, fed by fatty acid substrates.

View Article and Find Full Text PDF

Pregnancy complications associated with prenatal hypoxia lead to increased placental oxidative stress. Previous studies suggest that prenatal hypoxia can reduce mitochondrial respiratory capacity and mitochondrial fusion, which could lead to placental dysfunction and impaired fetal development. We developed a placenta-targeted treatment strategy using a mitochondrial antioxidant, MitoQ, encapsulated into nanoparticles (nMitoQ) to reduce placental oxidative stress and (indirectly) improve fetal outcomes.

View Article and Find Full Text PDF

Mitochondrial dysfunction is a major cause and/or contributor to the development and progression of vision defects in many ophthalmologic and mitochondrial diseases. Despite their mechanistic commonality, these diseases exhibit an impressive variety in sex- and tissue-specific penetrance, incidence, and severity. Currently, there is no functional explanation for these differences.

View Article and Find Full Text PDF

Aims: Perinatal iron deficiency (ID) alters developmental trajectories of offspring, predisposing them to cardiovascular dysfunction in later life. The mechanisms underlying this long-term programming of renal function have not been defined. We hypothesized perinatal ID causes hypertension and alters kidney metabolic function and morphology in a sex-dependent manner in adult offspring.

View Article and Find Full Text PDF