Publications by authors named "Claudia Gross"

Background And Purpose: Myotonic dystrophy type 1 (DM1) is the most common form of adult-onset muscular dystrophy and is caused by an repeat expansion [r(CUG)] located in the 3' untranslated region of the DMPK gene. Symptoms include skeletal and cardiac muscle dysfunction and fibrosis. In DM1, there is a lack of established biomarkers in routine clinical practice.

View Article and Find Full Text PDF

PPP1R21 acts as a co-factor for protein phosphatase 1 (PP1), an important serine/threonine phosphatase known to be essential for cell division, control of glycogen metabolism, protein synthesis, and muscle contractility. Bi-allelic pathogenic variants in PPP1R21 were linked to a neurodevelopmental disorder with hypotonia, facial dysmorphism, and brain abnormalities (NEDHFBA) with pediatric onset. Functional studies unraveled impaired vesicular transport as being part of PPP1R21-related pathomechanism.

View Article and Find Full Text PDF

Background: Extensive physical activity (PA; ≥18 METh/week, MET metabolic equivalent of tasks hours) postcancer diagnosis has shown favorable effects on colorectal cancer disease-free survival. However, the feasibility of introducing this high volume of PA in this patient group is unclear. Therefore, the aim of the F-PROTECT study was to evaluate the feasibility of extensive and prolonged PA (≥18 METh/week over 12 months) in colorectal cancer patients with the primary objectives to (1) recruit 50 patients within 12 months and (2) reach an attendance rate of ≥70%.

View Article and Find Full Text PDF

The synthesis of cytochrome c oxidase 2 (SCO ) gene encodes for a mitochondrial located metallochaperone essential for the synthesis of the cytochrome c oxidase (COX) subunit 2. Recessive mutations in SCO have been reported in several cases with fatal infantile cardioencephalomyopathy with COX deficiency and in only four cases with axonal neuropathy. Here, we identified a homozygous pathogenic variant (c.

View Article and Find Full Text PDF
Article Synopsis
  • - Goltz syndrome (GS) is a rare X-linked disorder caused by mutations in the PORCN gene, leading to a range of symptoms including skin and skeletal abnormalities, developmental delays, and neurological issues, especially in males who often experience in utero lethality.
  • - Two case studies are presented: one girl with typical GS features and severe developmental issues from a PORCN mutation, and a boy exhibiting fewer skin symptoms but significant neurological problems linked to a novel PORCN mutation.
  • - The findings point to the need for more genetic and functional analysis of GS cases, indicating that some mutations may have incomplete penetrance, and highlight the importance of CNS vulnerabilities in diagnosis.
View Article and Find Full Text PDF

The molecular carcinogenesis of intraductal tubulopapillary neoplasms (ITPN), recently described as rare neoplasms in the pancreato-biliary tract with a favorable prognosis despite a high incidence of associated pancreato-biliary adenocarcinoma, is still poorly understood. To identify driver genes, chromosomal gains and losses, mutational signatures, key signaling pathways, and potential therapeutic targets, the molecular profile of 11 biliary and 6 pancreatic ITPNs, associated with invasive adenocarcinoma in 14/17 cases, are studied by whole exome sequencing (WES). The WES of 17 ITPNs reveals common copy number variants (CNVs) broadly distributed across the genome, with recurrent chromosomal deletions primarily in 1p36 and 9p21 affecting the tumor suppressors and , respectively, and gains in 1q affecting the prominent oncogene .

View Article and Find Full Text PDF

Aims: MICU1 encodes the gatekeeper of the mitochondrial Ca uniporter, MICU1 and biallelic loss-of-function mutations cause a complex, neuromuscular disorder in children. Although the role of the protein is well understood, the precise molecular pathophysiology leading to this neuropaediatric phenotype has not been fully elucidated. Here we aimed to obtain novel insights into MICU1 pathophysiology.

View Article and Find Full Text PDF

In magnetic resonance imaging (MRI) examinations, moderate to severe changes of the distal sesamoidean impar ligament (DSIL) were found in horses with lameness localized to their feet. Histologic abnormalities were detected more commonly in lame horses. Because of its heterogeneity and small thickness, evaluation of the DSIL in MRI can be challenging.

View Article and Find Full Text PDF

Transforming growth factor beta 3 (TGFβ3) promotes tenogenic differentiation and may enhance tendon regeneration in vivo. This study aimed to apply TGFβ3 absorbed in decellularized equine superficial digital flexor tendon scaffolds, and to investigate the bioactivity of scaffold-associated TGFβ3 in an in vitro model. TGFβ3 could effectively be loaded onto tendon scaffolds so that at least 88% of the applied TGFβ3 were not detected in the rinsing fluid of the TGFβ3-loaded scaffolds.

View Article and Find Full Text PDF

Transport And Golgi Organization protein 2 (TANGO2) deficiency has recently been identified as a rare metabolic disorder with a distinct clinical and biochemical phenotype of recurrent metabolic crises, hypoglycemia, lactic acidosis, rhabdomyolysis, arrhythmias, and encephalopathy with cognitive decline. We report nine subjects from seven independent families, and we studied muscle histology, respiratory chain enzyme activities in skeletal muscle and proteomic signature of fibroblasts. All nine subjects carried autosomal recessive TANGO2 mutations.

View Article and Find Full Text PDF

Doxorubicin (DOX) is a widely used chemotherapeutic anticancer drug. Its intrinsic fluorescence properties enable investigation of tumor response, drug distribution and metabolism. First phantom studies in vitro showed optoacoustic property of DOX.

View Article and Find Full Text PDF

Age-related degenerative changes in tendon tissue represent a common cause for acute tendon pathologies. Although the regenerative potential of multipotent mesenchymal stromal cells (MSC) was reported to restore functionality in injured tendon tissue, cellular mechanisms of action remain partly unclear. Potential tenogenic differentiation of applied MSC is affected by various intrinsic and extrinsic factors.

View Article and Find Full Text PDF

Transplantation of multipotent mesenchymal progenitor cells is a valuable option for treating tendon disease. Tenogenic differentiation leading to cell replacement and subsequent matrix modulation may contribute to the regenerative effects of these cells, but it is unclear whether this occurs in the inflammatory environment of acute tendon disease. Equine adipose-derived stromal cells (ASC) were cultured as monolayers or on decellularized tendon scaffolds in static or dynamic conditions, the latter represented by cyclic stretching.

View Article and Find Full Text PDF

The appendix gives rise to goblet cell carcinoids, which represent special carcinomas with distinct biological and histological features. Their genetic background and molecular relationship to colorectal adenocarcinoma is largely unknown. We therefore performed a next-generation sequencing analysis of 25 appendiceal carcinomas including 11 goblet cell carcinoids, 7 adenocarcinomas ex-goblet cell carcinoid, and 7 primary colorectal-type adenocarcinomas, using a modified Colorectal Cancer specific Panel comprising 32 genes linked to colorectal and neuroendocrine tumorigenesis.

View Article and Find Full Text PDF

Individual tumor characterization and treatment response monitoring based on current medical imaging methods remain challenging. This work investigates hyperpolarized (13) C compounds in an orthotopic rat hepatocellular carcinoma (HCC) model system before and after transcatheter arterial embolization (TAE). HCC ranks amongst the top six most common cancer types in humans and accounts for one-third of cancer-related deaths worldwide.

View Article and Find Full Text PDF

Purpose: Preclinical model systems should faithfully reflect the complexity of the human pathology. In hepatocellular carcinoma (HCC), the tumor vasculature is of particular interest in diagnosis and therapy. By comparing two commonly applied preclinical model systems, diethylnitrosamine induced (DEN) and orthotopically implanted (McA) rat HCC, we aimed to measure tumor biology noninvasively and identify differences between the models.

View Article and Find Full Text PDF

Purpose: Novel therapeutic approaches are needed to improve the postoperative management of residual nonfunctioning pituitary adenomas (NFPA), given their high relapse rate. Here, we evaluated the antitumor efficacy of the dual PI3K/mTOR inhibitor NVP-BEZ235 in the only available model of spontaneous NFPAs (MENX rats).

Experimental Design: Organotypic cultures of rat primary NFPAs were incubated with NVP-BEZ235 and assessed for cell viability, proliferation, apoptosis, and PI3K/mTOR inhibition.

View Article and Find Full Text PDF

Cichlidae is the most species-rich freshwater family of Perciformes and has attracted the attention of aquarium hobbyists, aquaculturists, and sport fisherman. Oreochromis niloticus is very important in aquaculture today and is currently used in varied areas of study as an 'experimental model'. Oreochromis niloticus has been characterized using classical and molecular cytogenetic techniques, with special attention paid to heterochromatin structure and the identification of sex chromosomes.

View Article and Find Full Text PDF

Muscle-eye-brain disease (MEB, OMIM 253280) is an autosomal recessive disorder characterized by a distinct triad of congenital muscular dystrophy, structural eye abnormalities, and cobblestone lissencephaly. Clinically, MEB patients present with early onset muscular hypotonia, severely compromised motor development, and mental retardation. Magnetic resonance imaging reveals a lissencephaly type II with hypoplasia of the brainstem and cerebellum.

View Article and Find Full Text PDF

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder linked to a mutation in the huntingtin gene leading to protein aggregation in neurons. The generation of new neurons in neurogenic regions, such as the subventricular zone of the lateral ventricle and the dentate gyrus of the hippocampus, is affected by these aggregation processes. In particular, hippocampal neurogenesis is reduced in the R6/2 transgenic mouse model of HD.

View Article and Find Full Text PDF

Walker--Warburg syndrome (WWS), the most severe alpha-dystroglycanopathy, is characterized by brain and eye anomalies, and congenital muscular dystrophy (CMD). So far at least four genes (POMT1, POMT2, Fukutin, and FKRP gene) have been implicated in WWS, accounting for about 30% of all cases. We report a male patient with WWS resulting from a homozygous nonsense mutation (R514X) in the POMT1 gene.

View Article and Find Full Text PDF

We report the clinical, structural, functional and genetic characterization of a 37-year-old Caucasian female, presenting as a sporadic case of complicated spastic paraplegia with thin corpus callosum (CC), cognitive impairment, amyotrophy of the hand muscles and a sensorimotor neuropathy and review the literature for spastic paraplegia with thin CC. Magnetic resonance imaging (MRI) examination revealed a thin CC with fronto-parietal cortical atrophy. 18Fluordesoxyglucose positron emission tomography (FDG-PET) showed reduced cortical and thalamic metabolism.

View Article and Find Full Text PDF

Mutations of the protein O-mannosyltransferase (POMT1) gene affect glycosylation of alpha-dystroglycan, leading to Walker-Warburg syndrome, a lethal disorder in early life with severe congenital muscular dystrophy, and brain and eye malformations. Recently, we described a novel form of recessive limb girdle muscular dystrophy with mild mental retardation, associated with an abnormal alpha-dystroglycan pattern in the muscle, suggesting a glycosylation defect. Here, we present evidence that this distinct phenotype results from a common mutation (A200P) in the POMT1 gene.

View Article and Find Full Text PDF