Background: Maladapted endothelial cells (ECs) secrete ENPP2 (ectonucleotide pyrophosphatase/phosphodiesterase 2; autotaxin)-a lysophospholipase D that generates lysophosphatidic acids (LPAs). ENPP2 derived from the arterial wall promotes atherogenic monocyte adhesion induced by generating LPAs, such as arachidonoyl-LPA (LPA20:4), from oxidized lipoproteins. Here, we aimed to determine the role of endothelial ENPP2 in the production of LPAs and atherosclerosis.
View Article and Find Full Text PDFBackground: The necrotic core partly formed by ineffective efferocytosis increases the risk of an atherosclerotic plaque rupture. Microribonucleic acids contribute to necrotic core formation by regulating efferocytosis and macrophage apoptosis. Atherosclerotic plaque rupture occurs at increased frequency in the early morning, indicating diurnal changes in plaque vulnerability.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
March 2020
Objective: Inflammatory activation changes the mitochondrial function of macrophages from oxidative phosphorylation to reactive oxygen species production, which may promote necrotic core formation in atherosclerotic lesions. In hypoxic and cancer cells, HIF-1α (hypoxia-inducible factor) promotes oxygen-independent energy production by microRNAs. Therefore, we studied the role of HIF-1α in the regulation of macrophage energy metabolism in the context of atherosclerosis.
View Article and Find Full Text PDFBlood flow at arterial bifurcations and curvatures is naturally disturbed. Endothelial cells (ECs) fail to adapt to disturbed flow, which transcriptionally direct ECs toward a maladapted phenotype, characterized by chronic regeneration of injured ECs. MicroRNAs (miRNAs) can regulate EC maladaptation through targeting of protein-coding RNAs.
View Article and Find Full Text PDFBackground: Alternative macrophage activation, which relies on mitochondrial oxidative metabolism, plays a central role in the resolution of inflammation and prevents atherosclerosis. Moreover, macrophages handle large amounts of cholesterol and triglycerides derived from the engulfed modified lipoproteins during atherosclerosis. Although several microRNAs regulate macrophage polarization, the role of the microRNA-generating enzyme Dicer in macrophage activation during atherosclerosis is unknown.
View Article and Find Full Text PDFA high-fat diet increases bacterial lipopolysaccharide (LPS) in the circulation and thereby stimulates glucagon-like peptide 1 (GLP-1)-mediated insulin secretion by upregulating interleukin-6 (IL-6). Although microRNA-155-5p (miR-155-5p), which increases IL-6 expression, is upregulated by LPS and hyperlipidemia and patients with familial hypercholesterolemia less frequently develop diabetes, the role of miR-155-5p in the islet stress response to hyperlipidemia is unclear. In this study, we demonstrate that hyperlipidemia-associated endotoxemia upregulates miR-155-5p in murine pancreatic β-cells, which improved glucose metabolism and the adaptation of β-cells to obesity-induced insulin resistance.
View Article and Find Full Text PDFWnt/β-catenin signaling is of fundamental importance in the regulation of self-renewal, migration/invasion, and differentiation of human mesenchymal stem cells (hMSCs). Because little information is available about the function of Frizzled receptors (Fzds) as the main receptors of Wnt proteins in hMSCs, we first performed comparative Fzd mRNA expression profiling. Fzd9 and Fzd10 were not expressed in hMSCs.
View Article and Find Full Text PDFThe capacity of human mesenchymal stem cells (hMSC) for self-renewal and differentiation is a tightly regulated process within their microenvironment--the stem cell niche. For future therapeutic applications of hMSC within the frame of tissue engineering, it is of major importance to understand the factors involved in triggering differentiation cascades of hMSC. Using either osteoblast-conditioned medium or an indirect coculture system, we investigated whether soluble factors from human osteoblasts (hOB) are sufficient to induce early osteogenic markers in hMSC.
View Article and Find Full Text PDFHere, we describe a novel member in the group of membrane-anchored chymotrypsin (S1)-like serine proteases, namely testis serine protease 1 (T-SP1), as it is principally expressed in testis tissue. The human T-SP1 gene encompasses 28.7 kb on the short arm of chromosome 8 and consists of seven exons.
View Article and Find Full Text PDFBackground: Human mesenchymal stem cells (hMSC) are increasingly the focus of both basic and clinical research due to their ability to strike a balance between self-renewal and commitment to mesodermal differentiation. However, the promising therapeutic utility of hMSC in regenerative medical approaches requires detailed knowledge about their molecular characteristics. Therefore, genetic modification of hMSC provides a powerful tool to understand their complex molecular regulation mechanisms.
View Article and Find Full Text PDF