Amplification of the MYCN oncogene occurs in ~25% of primary neuroblastomas and is the single most powerful biological marker of poor prognosis in this disease. MYCN transcriptionally regulates a range of biological processes important for cancer, including cell metabolism. The MYCN-regulated metabolic gene SLC16A1, encoding the lactate transporter monocarboxylate transporter 1 (MCT1), is a potential therapeutic target.
View Article and Find Full Text PDFMembers of the ABC transporter family, particularly P-glycoprotein (P-gp, ABCB1), breast cancer resistance protein (BCRP, ABCG2) and multidrug resistance protein 1 (MRP1, ABCC1) are well characterized mediators of multidrug resistance, however their pharmacological inhibition has so far failed as a clinical strategy. Harnessing collateral sensitivity, a form of synthetic lethality where cells with acquired multidrug resistance exhibit hypersensitivity to unrelated agents, may be an alternative approach to targeting multidrug resistant tumour cells. We characterized a novel small molecule modulator that selectively enhanced MRP1-dependent efflux of reduced glutathione (GSH), an endogenous MRP1 substrate.
View Article and Find Full Text PDFAmplification of the oncogene is associated with an aggressive phenotype and poor outcome in childhood neuroblastoma. Polyamines are highly regulated essential cations that are frequently elevated in cancer cells, and the rate-limiting enzyme in polyamine synthesis, ornithine decarboxylase 1 (ODC1), is a direct transcriptional target of MYCN. Treatment of neuroblastoma cells with the ODC1 inhibitor difluoromethylornithine (DFMO), although a promising therapeutic strategy, is only partially effective at impeding neuroblastoma cell growth due to activation of compensatory mechanisms resulting in increased polyamine uptake from the surrounding microenvironment.
View Article and Find Full Text PDFSurvival rates for pediatric patients suffering from mixed lineage leukemia (MLL)-rearranged leukemia remain below 50% and more targeted, less toxic therapies are urgently needed. A screening method optimized to discover cytotoxic compounds selective for MLL-rearranged leukemia identified CCI-006 as a novel inhibitor of MLL-rearranged and CALM-AF10 translocated leukemias that share common leukemogenic pathways. CCI-006 inhibited mitochondrial respiration and induced mitochondrial membrane depolarization and apoptosis in a subset (7/11, 64%) of MLL-rearranged leukemia cell lines within a few hours of treatment.
View Article and Find Full Text PDFThe ATP-binding cassette transporter ABCC4 (multidrug resistance protein 4, MRP4) mRNA level is a strong predictor of poor clinical outcome in neuroblastoma which may relate to its export of endogenous signalling molecules and chemotherapeutic agents. We sought to determine whether ABCC4 contributes to development, growth and drug response in neuroblastoma in vivo. In neuroblastoma patients, high ABCC4 protein levels were associated with reduced overall survival.
View Article and Find Full Text PDFMaintenance of genome integrity requires that branched nucleic acid molecules be accurately processed to produce double-helical DNA. Flap endonucleases are essential enzymes that trim such branched molecules generated by Okazaki-fragment synthesis during replication. Here, we report crystal structures of bacteriophage T5 flap endonuclease in complexes with intact DNA substrates and products, at resolutions of 1.
View Article and Find Full Text PDFThe RNA-binding protein dyskerin, encoded by the DKC1 gene, functions as a core component of the telomerase holoenzyme as well as ribonuclear protein complexes involved in RNA processing and ribosome biogenesis. The diverse roles of dyskerin across many facets of RNA biology implicate its potential contribution to malignancy. In this study, we examined the expression and function of dyskerin in neuroblastoma.
View Article and Find Full Text PDFMYCN amplification occurs in 20% of neuroblastomas and is strongly related to poor clinical outcome. We have identified folate-mediated one-carbon metabolism as highly upregulated in neuroblastoma tumors with MYCN amplification and have validated this finding experimentally by showing that MYCN amplified neuroblastoma cell lines have a higher requirement for folate and are significantly more sensitive to the antifolate methotrexate than cell lines without MYCN amplification. We have demonstrated that methotrexate uptake in neuroblastoma cells is mediated principally by the reduced folate carrier (RFC; SLC19A1), that SLC19A1 and MYCN expression are highly correlated in both patient tumors and cell lines, and that SLC19A1 is a direct transcriptional target of N-Myc.
View Article and Find Full Text PDFMultidrug resistance protein 4 (MRP4/ABCC4), a member of the ATP-binding cassette (ABC) transporter superfamily, is an organic anion transporter capable of effluxing a wide range of physiologically important signalling molecules and drugs. MRP4 has been proposed to contribute to numerous functions in both health and disease; however, in most cases these links remain to be unequivocally established. A major limitation to understanding the physiological and pharmacological roles of MRP4 has been the absence of specific small molecule inhibitors, with the majority of established inhibitors also targeting other ABC transporter family members, or inhibiting the production, function or degradation of important MRP4 substrates.
View Article and Find Full Text PDFBackground: ATP-binding cassette (ABC) transporters play various roles in cancer biology and drug resistance, but their association with outcomes in serous epithelial ovarian cancer (EOC) is unknown.
Methods: The relationship between clinical outcomes and ABC transporter gene expression in two independent cohorts of high-grade serous EOC tumors was assessed with real-time quantitative polymerase chain reaction, analysis of expression microarray data, and immunohistochemistry. Associations between clinical outcomes and ABCA transporter gene single nucleotide polymorphisms were tested in a genome-wide association study.
Escherichia coli Exonuclease IX (ExoIX), encoded by the xni gene, was the first identified member of a novel subfamily of ubiquitous flap endonucleases (FENs), which possess only one of the two catalytic metal-binding sites characteristic of other FENs. We have solved the first structure of one of these enzymes, that of ExoIX itself, at high resolution in DNA-bound and DNA-free forms. In the enzyme-DNA cocrystal, the single catalytic site binds two magnesium ions.
View Article and Find Full Text PDFBackground: Although the prognostic value of the ATP-binding cassette, subfamily C (ABCC) transporters in childhood neuroblastoma is usually attributed to their role in cytotoxic drug efflux, certain observations have suggested that these multidrug transporters might contribute to the malignant phenotype independent of cytotoxic drug efflux.
Methods: A v-myc myelocytomatosis viral related oncogene, neuroblastoma derived (MYCN)-driven transgenic mouse neuroblastoma model was crossed with an Abcc1-deficient mouse strain (658 hMYCN(1/-), 205 hMYCN(+/1) mice) or, alternatively, treated with the ABCC1 inhibitor, Reversan (n = 20). ABCC genes were suppressed using short interfering RNA or overexpressed by stable transfection in neuroblastoma cell lines BE(2)-C, SH-EP, and SH-SY5Y, which were then assessed for wound closure ability, clonogenic capacity, morphological differentiation, and cell growth.
Increased expression of specific ATP-binding cassette (ABC) transporters is known to mediate the efflux of chemotherapeutic agents from cancer cells. Therefore, establishing how ABC transporter genes are controlled at their transcription level may help provide insight into the role of these multifaceted transporters in the malignant phenotype. We have investigated ABC transporter gene expression in a large neuroblastoma data set of 251 tumor samples.
View Article and Find Full Text PDFFor pediatric cancers like neuroblastoma, the most common extracranial solid tumor of infancy, p53 mutations are rare at diagnosis, but may be acquired after chemotherapy, suggesting a potential role in drug resistance. Heavy metal-selected neuroblastoma cells were found to acquire an unusually broad multidrug resistance (MDR) phenotype but displayed no alterations in genes associated with "classic" MDR. These cells had acquired a mutant p53 gene, linking p53 to drug sensitivity in neuroblastoma.
View Article and Find Full Text PDFOverexpression of the human MYCN oncogene driven by a tyrosine hydroxylase promoter causes tumours in transgenic mice that recapitulate the childhood cancer neuroblastoma. To establish an in vitro model to study this process, a series of isogenic cell lines were developed from these MYCN-driven murine tumours. Lines were established from tumours arising in homozygous and hemizygous MYCN transgenic mice.
View Article and Find Full Text PDFPurpose: We have previously shown in a retrospective study that expression of the multidrug transporter gene MRP1 (ABCC1) is associated with outcome in neuroblastoma. We have now undertaken a prospective analysis to examine the independent prognostic significance of MRP1 expression in a large cohort of primary untreated neuroblastomas.
Patients And Methods: Two hundred nine diagnostic neuroblastoma samples from patients prospectively enrolled onto the Pediatric Oncology Group biology protocol 9047 were analyzed for expression of the MRP1, MDR1, MYCN, and TRKA genes using real-time polymerase chain reaction.
Members of the multidrug resistance-associated protein (MRP) family of transporters are believed to contribute to cytotoxic drug resistance and chemotherapy failure. We observed frequent MRP4 overexpression in aggressive primary neuroblastoma, a disease for which we have previously shown MRP1 to be a prognostic indicator. High MRP4 expression correlated with MYCN oncogene amplification and was significantly associated with poor clinical outcome.
View Article and Find Full Text PDFIn the childhood cancer neuroblastoma (NB), the level of expression of the multidrug resistance-associated protein (MRP1) gene is strongly correlated with expression of the MYCN oncogene in primary NB tumors, suggesting that MRP1 may be a target for MYCN-mediated gene regulation. In this study, we show that MYCN induction in human NB cells results in increased MRP1 mRNA and protein levels, which in turn is accompanied by increased drug resistance and enhanced MRP1-mediated drug efflux. Furthermore, luciferase activity from MRP1 promoter/luciferase gene reporter constructs was significantly increased in NB cells with exogenous overexpression of MYCN, whereas activity was decreased in NB cells stably transfected with MYCN-antisense vectors.
View Article and Find Full Text PDFEpothilones, like paclitaxel, bind to beta-tubulin and stabilize microtubules. We selected a series of four leukemia sublines that display increasing levels of resistance to the epothilone analog desoxyepothilone B (dEpoB). The dEpoB cells selected in 30-140 nM were approximately 15-fold cross-resistant to paclitaxel, while 300 nM selected cells were 467-fold resistant to this agent.
View Article and Find Full Text PDFEarly studies of p53 in neuroblastoma reported infrequent mutations in tumours and cell lines. Cytoplasmic sequestration was later proposed as an alternative mechanism of inactivation, but many studies have since reported an intact p53 pathway in neuroblastoma cell lines, as detected by nuclear p53 accumulation after DNA damage, intact DNA binding, transcriptional activation of target genes and the induction of apoptosis. In some MYCN amplified cell lines however, an irradiation induced G(1) arrest does not occur, despite the presence of normal p53.
View Article and Find Full Text PDF