Publications by authors named "Claudia Castillo-Gonzalez"

NASA envisions a future where humans establish a thriving colony on the Moon by 2050. Plants will be essential for this endeavor, but little is known about their adaptation to extraterrestrial bodies. The capacity to grow plants in lunar regolith would represent a major step towards this goal by minimizing the reliance on resources transported from Earth.

View Article and Find Full Text PDF

Spaceflight-induced changes in astronaut telomeres have garnered significant attention in recent years. While plants represent an essential component of future long-duration space travel, the impacts of spaceflight on plant telomeres and telomerase have not been examined. Here we report on the telomere dynamics of Arabidopsis thaliana grown aboard the International Space Station.

View Article and Find Full Text PDF

The H3 methyltransferases ATXR5 and ATXR6 deposit H3.1K27me1 to heterochromatin to prevent genomic instability and transposon re-activation. Here, we report that atxr5 atxr6 mutants display robust resistance to Geminivirus.

View Article and Find Full Text PDF

Chemical modifications in DNA impact gene regulation and chromatin structure. DNA oxidation, for example, alters gene expression, DNA synthesis and cell cycle progression. Modification of telomeric DNA by oxidation is emerging as a marker of genotoxic damage and is associated with reduced genome integrity and changes in telomere length and telomerase activity.

View Article and Find Full Text PDF

The recent discovery of the bona-fide telomerase RNA (TR) from plants reveals conserved and unique secondary structure elements and the opportunity for new insight into the telomerase RNP. Here we examine how two highly conserved proteins previously implicated in Arabidopsis telomere maintenance, AtPOT1a and AtNAP57 (dyskerin), engage plant telomerase. We report that AtPOT1a associates with Arabidopsis telomerase via interaction with TERT.

View Article and Find Full Text PDF

HOAP is a telomere-binding protein that has a conserved role in , but it also needs to evolve quickly to restrict telomeric retrotransposons.

View Article and Find Full Text PDF

KEY MESSAGE: tRNA Adenosine Deaminase 3 helps to sustain telomere tracts in a telomerase-independent fashion, likely through regulating cellular metabolism. Telomere length maintenance is influenced by a complex web of chromatin and metabolism-related factors. We previously reported that a lncRNA termed AtTER2 regulates telomerase activity in Arabidopsis thaliana in response to DNA damage.

View Article and Find Full Text PDF

Telomerase is essential for maintaining telomere integrity. Although telomerase function is widely conserved, the integral telomerase RNA (TR) that provides a template for telomeric DNA synthesis has diverged dramatically. Nevertheless, TR molecules retain 2 highly conserved structural domains critical for catalysis: a template-proximal pseudoknot (PK) structure and a downstream stem-loop structure.

View Article and Find Full Text PDF

Duplicate POT1 genes must rapidly diverge or be inactivated. Protection of telomeres 1 (POT1) encodes a conserved telomere binding protein implicated in both chromosome end protection and telomere length maintenance. Most organisms harbor a single POT1 gene, but in the few lineages where the POT1 family has expanded, the duplicate genes have diversified.

View Article and Find Full Text PDF

Plant viruses have evolved multiple strategies to overcome host defense to establish an infection. Here, we identified two components of a host mitogen-activated protein kinase (MAPK) cascade, MKK2 and MPK4, as bona fide targets of the βC1 protein encoded by the betasatellite of tomato yellow leaf curl China virus (TYLCCNV). βC1 interacts with the kinase domain of MKK2 and inhibits its activity.

View Article and Find Full Text PDF

Drought causes approximately two-thirds of crop and yield loss worldwide. To sustain future generations, there is a need to develop robust crops with enhanced water use efficiency. Resurrection plants are naturally resilient and tolerate up to 95% water loss with the ability to revive upon watering.

View Article and Find Full Text PDF

The advent of host-induced gene silencing (HIGS) technology for the development of pathogen-resistant cultivars led to the discovery of cross-kingdom RNA interference. In a recent Science paper, Cai et al. (2018) discovered that plant extracellular vesicles act as Trojan horses to deliver small RNAs into fungi to fight infection.

View Article and Find Full Text PDF

Serrate (SE) is a key component in RNA metabolism. Little is known about whether and how it can regulate epigenetic silencing. Here, we report histone methyltransferases ATXR5 and ATXR6 (ATXR5/6) as novel partners of SE.

View Article and Find Full Text PDF

Chromatin remodelling factors (CHRs) typically function to alter chromatin structure. CHRs also reside in ribonucleoprotein complexes, but little is known about their RNA-related functions. Here we show that CHR2 (also known as BRM), the ATPase subunit of the large switch/sucrose non-fermentable (SWI/SNF) complex, is a partner of the Microprocessor component Serrate (SE).

View Article and Find Full Text PDF

Argonaute (AGO) proteins execute RNA-induced transcriptional and post-transcriptional gene silencing. In this issue of Developmental Cell, Liu et al. (2018) uncover a nuclear function for Arabidopsis AGO1 in positively regulating gene expression.

View Article and Find Full Text PDF

RNA-induced silencing complex (RISC) is composed of miRNAs and AGO proteins. AGOs use miRNAs as guides to slice target mRNAs to produce truncated 5' and 3' RNA fragments. The 5' cleaved RNA fragments are marked with uridylation for degradation.

View Article and Find Full Text PDF

Like metazoans, plants use small regulatory RNAs (sRNAs) to direct gene expression. Several classes of sRNAs, which are distinguished by their origin and biogenesis, exist in plants. Among them, microRNAs (miRNAs) and trans-acting small interfering RNAs (ta-siRNAs) mainly inhibit gene expression at post-transcriptional levels.

View Article and Find Full Text PDF

Transcriptional gene silencing (TGS) can serve as an innate immunity against invading DNA viruses throughout Eukaryotes. Geminivirus code for TrAP protein to suppress the TGS pathway. Here, we identified an Arabidopsis H3K9me2 histone methyltransferase, Su(var)3-9 homolog 4/Kryptonite (SUVH4/KYP), as a bona fide cellular target of TrAP.

View Article and Find Full Text PDF

microRNAs (miRNAs) are small non-coding RNAs, regulating most if not all, biological processes in eukaryotic organisms. miRNAs are initially processed from primary transcripts (pri-miRNAs) to produce miRNA precursors (pre-miRNAs), that are further processed into miRNA and its complementary strands (miRNA/*). In Arabidopsis, and possibly other plants, the processing from pri-miRNAs to pre-miRNAs and from pre-miRNAs to miRNA/* are both implemented through Dicer-like 1 (DCL1) complexes.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) originate from primary transcripts (pri-miRNAs) with characteristic stem-loop structures, and their accurate processing is required for the production of functional miRNAs. Here, using the pri-miR-166 family in Arabidopsis thaliana as a paradigm, we report the crucial role of pri-miRNA terminal loops in miRNA biogenesis. We found that multibranched terminal loops in pri-miR-166s substantially suppress miR-166 expression in vivo.

View Article and Find Full Text PDF