Publications by authors named "Claudia Carotenuto"

Hypothesis: The porosity affects the rheological response of porous particle suspensions.

Experiments: Non-Brownian suspensions of porous particles immersed in a Newtonian Polyisobutene are investigated. Three different particles, with different porosity, pore structure and similar size, and non-porous irregular particles are used.

View Article and Find Full Text PDF

Wettability, typically estimated through the contact angle, is a fundamental property of surfaces with wide-ranging implications in both daily life and industrial processes. Recent scientific interest has been paid to the surfaces exhibiting extreme wettability: superhydrophobic and superhydrophilic surfaces, characterized by high water repellency and exceptional water wetting, respectively. Both chemical composition and morphology play a role in the determination of the wettability "performance" of a surface.

View Article and Find Full Text PDF

The Sauter mean diameter, , is a representative parameter in emulsions that indicates the average size of the oil droplets once the emulsion becomes stable. Several mathematical and physical approaches have been employed in the literature to seek expressions for under different conditions. The present work sheds light on this rich literature and emphasizes that the characterization of emulsions is still a fertile field for investigation.

View Article and Find Full Text PDF

Carotenuto (, 2021, , 309) recently showed that the complex viscosity of a Newtonian non-Brownian suspension is smaller than the steady shear one, whatever the imposed strain amplitude. Oscillatory shear can alter the microstructure through a shear induced particle diffusion mechanism. This mechanism needs time to show its effect and cannot be invoked to explain the observed mismatch between the steady shear and the complex viscosity.

View Article and Find Full Text PDF

Aqueous solutions of hydroxypropyl methylcellulose (HPMC) show inverse thermoreversible gelation, i.e., they respond to small temperature variations exhibiting sol-gel transition during heating, and reversibly gel-sol transition during cooling.

View Article and Find Full Text PDF

Manure from lactating and non-lactating water buffaloes was separately collected from a single dairy farm and anaerobically digested under mesophilic conditions in batch mode to produce biogas. This substrate, scarcely studied in the literature, showed two peculiarities regarding two fundamental parameters in the digestion processes: C/N ratio and initial pH. Typically, optimal C/N varies from 20 to 30, but in this work an almost negligible role of this ratio is observed.

View Article and Find Full Text PDF

Buffalo dung is a low-cost substrate with plenty of carbohydrates, an optimal carbon/nitrogen ratio, and a rich microbial flora, and could become a valuable source of biogas. Therefore, in the present study we compared the type and amount of specific eubacteria to the different configurations of pH, temperature and thermal pretreatment after fermentation in batch reactors in order to understand the suitability of buffalo manure for hydrogen production. The phylogenetic structure of the microbial community in fermentation samples was studied using denaturing gradient gel electrophoresis to generate fingerprints of 16S rRNA genes.

View Article and Find Full Text PDF