Background And Aims: Invariant natural killer T [iNKT] cells perform pleiotropic functions in different tissues by secreting a vast array of pro-inflammatory and cytotoxic molecules. However, the presence and function of human intestinal iNKT cells capable of secreting immunomodulatory molecules such as IL-10 has never been reported so far. Here we describe for the first time the presence of IL10-producing iNKT cells [NKT10 cells] in the intestinal lamina propria of healthy individuals and of Crohn's disease [CD] patients.
View Article and Find Full Text PDFMacrophages are in the spotlight of cancer immunotherapy research because they exert a wide spectrum of protumorigenic functions. In this issue, Pfirschke and colleagues report that macrophage targeting pulls the strings of the tumor microenvironment, ultimately leading to a coordinated antitumorigenic immune reaction in a lung carcinoma mouse model.
View Article and Find Full Text PDFInvariant natural killer T (iNKT) cells are lipid-specific T lymphocytes endowed with cytotoxic activities and are thus considered important in antitumor immunity. While several studies have demonstrated iNKT cell cytotoxicity against different tumors, very little is known about their cell-killing activities in human colorectal cancer (CRC). Our aim was to assess whether human iNKT cells are cytotoxic against colon cancer cells and the mechanisms underlying this activity.
View Article and Find Full Text PDFBackground: The gut microbiota plays a central role in host physiology and in several pathological mechanisms in humans. Antibiotics compromise the composition and functions of the gut microbiota inducing long-lasting detrimental effects on the host. Recent studies suggest that the efficacy of different clinical therapies depends on the action of the gut microbiota.
View Article and Find Full Text PDF, belonging to the order Bacteroidales, is a common, short-chain fatty acid producing member of the human intestinal microbiota. A decreased abundance of has been linked to different microbiota-associated diseases, such as non-alcoholic fatty liver disease, cystic fibrosis and inflammatory bowel disease (IBD). The type strain of has been genome-sequenced, but otherwise very little is known about this anaerobic bacterium.
View Article and Find Full Text PDFDifferent gastrointestinal disorders, including inflammatory bowel diseases (IBD), have been linked to alterations of the gut microbiota composition, namely dysbiosis. Fecal microbiota transplantation (FMT) is considered an encouraging therapeutic approach for ulcerative colitis patients, mostly as a consequence of normobiosis restoration. We recently showed that therapeutic effects of FMT during acute experimental colitis are linked to functional modulation of the mucosal immune system and of the gut microbiota composition.
View Article and Find Full Text PDFInflammatory bowel disease (IBD) pathogenesis has been linked to the aberrant activation of the Gut-associated lymphoid tissues against components of the intestinal microbiota. Although the contribution of CD4 T helper cells to inflammatory processes is being increasingly acknowledged, the functional engagement of human invariant natural killer T (iNKT) cells is still poorly defined. Here, we evaluated the functional characteristics of intestinal iNKT cells during IBD pathogenesis and to exploit the role of mucosa-associated microbiota recognition in triggering iNKT cells' pro-inflammatory responses in vivo.
View Article and Find Full Text PDFThe understanding of human diseases has been greatly expanded thanks to the study of animal models. Nonetheless, histopathological evaluation of experimental models needs to be as rigorous as that applied for human samples. Indeed, drawing reliable and accurate conclusions is critically influenced by the quality of tissue section preparation.
View Article and Find Full Text PDFAlteration of the gut microbiota has been associated with different gastrointestinal disorders. Normobiosis restoration by faecal microbiota transplantation (FMT) is considered a promising therapeutic approach, even if the mechanisms underlying its efficacy are at present largely unknown. Here we sought to elucidate the functional effects of therapeutic FMT administration during experimental colitis on innate and adaptive immune responses in the intestinal mucosa.
View Article and Find Full Text PDFBackground And Aims: T helper 17 [Th17] cells are crucially involved in the immunopathogenesis of inflammatory bowel diseases in humans. Nevertheless, pharmacological blockade of interleukin 17A [IL17A], the Th17 signature cytokine, yielded negative results in patients with Crohn's disease [CD], and attempts to elucidate the determinants of Th17 cells' pathogenicity in the gut have so far proved unsuccessful. Here, we aimed to identify and functionally validate the pathogenic determinants of intestinal IL-17-producing T cells.
View Article and Find Full Text PDFThe gut mucosa is continuously exposed to a vast community of microorganisms, collectively defined as microbiota, establishing a mutualistic relationship with the host and contributing to shape the immune system. Gut microbiota is acquired at birth, and its composition is relatively stable during the entire adult life. Intestinal dysbiosis, defined as a microbial imbalance of gut bacterial communities, can be caused by several factors, including bacterial infections and antibiotic use, and has been associated with an increased risk to develop or exacerbate immune-mediated pathologies, such as allergic reactions, asthma, and inflammatory bowel diseases.
View Article and Find Full Text PDFAlthough murine xenograft models for human uveal melanoma (UM) are available, they are of limited utility for screening large compound libraries for the discovery of new drugs. We need new preclinical models which can efficiently evaluate drugs that can treat UM metastases. The zebrafish embryonic model is ideal for drug screening purposes because it allows the investigation of potential antitumor properties of drugs within 1 week.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
September 2014
Purpose: Uveal melanoma (UM) is fatal in up to 50% of patients because of liver metastases that are refractory to therapies currently available. While murine xenograft models for human uveal melanoma are available, they have limited utility for screening large compound libraries in drug discovery studies. Therefore, new robust preclinical models are needed that can efficiently evaluate drug efficacy for treatment of this malignancy.
View Article and Find Full Text PDF