The concept of "irreversibility" and its counterpart "reversibility" have become prominent in environmental and ecological research on human-induced changes, thresholds, climate tipping points, ecosystem degradation, and losses in the cryosphere and biosphere. Through a systematic literature review, we show that in these research fields, these notions are not only descriptive terms, but can have different semantic functions and normative aspects. The results suggest that, in the context of environmental and ecological research the concepts of irreversibility and reversibility have taken on additional usages in comparison to their contexts in theoretical thermodynamics and mechanics.
View Article and Find Full Text PDFJ Mater Sci Mater Med
July 2022
Across species, animals have diverse sex determination pathways, each consisting of a hierarchical cascade of genes and its associated regulatory mechanism. Houseflies have a distinctive polymorphic sex determination system in which a dominant male determiner, the M-factor, can reside on any of the chromosomes. We identified a gene, (), as the M-factor.
View Article and Find Full Text PDFConfronting motile cells with obstacles doubling as force sensors we tested the limits of the driving actin and myosin machinery. We could directly measure the force necessary to stop actin polymerization as well as the force present in the retrograde actin flow. Combined with detailed measurements of the retrograde flow velocity and specific manipulation of actin and myosin we found that actin polymerization and myosin contractility are not enough to explain the cells behavior.
View Article and Find Full Text PDFThis study presents an analytical model for the edge spread function (ESF) of a clinical CT system that allows reliable fits of noisy ESF data. The model was used for the calculation of the material-specific transfer function TF and an estimation of the signal transfer and the signal-to-noise ratio (SNR) in 2D. Images of the Catphan phantom were acquired with a clinical Siemens Somatom Sensation Cardiac 64 CT scanner combining four different x-ray tube outputs (40, 150, 250 and 350 mAs) with four different reconstruction filters, which covered the range from very smooth (B10s) to very sharp (B70s).
View Article and Find Full Text PDFPurpose: To measure radiation absorbed dose and its distribution in an anthropomorphic head phantom under clinically representative scan conditions in three widely used computed tomography (CT) scanners, and to relate those dose values to metrics such as high-contrast resolution, noise, and contrast-to-noise ratio (CNR) in the American College of Radiology CT accreditation phantom.
Methods: By inserting optically stimulated luminescence dosimeters (OSLDs) in the head of an anthropomorphic phantom specially developed for CT dosimetry (University of Florida, Gainesville), we measured dose with three commonly used scanners (GE Discovery CT750 HD, Siemens Definition, Philips Brilliance 64) at two different clinical sites (Walter Reed National Military Medical Center, National Institutes of Health). The scanners were set to operate with the same data-acquisition and image-reconstruction protocols as used clinically for typical head scans, respective of the practices of each facility for each scanner.
A straightforward method is presented to estimate peak skin doses (PSDs) delivered by computed tomography (CT) scanners. The measured PSD values are related to the well-known volume CT dose index (CTDI(vol)), displayed on the console of CT scanners. PSD measurement estimates were obtained, in four CT units, by placing radiochromic film on the surface of a CTDI head phantom.
View Article and Find Full Text PDFPurpose: Quality assurance in computed tomography (CT) is commonly performed with the Fourier-based modulation transfer function (MTF) and the noise variance, while more recently the noise power spectrum (NPS) has increased in popularity. The Fourier-based methods make assumptions such as shift-invariance and cyclostationarity. These assumptions are violated in real clinical systems and consequently are expected to result in systematic errors.
View Article and Find Full Text PDFCells migrate through a crowded environment during processes such as metastasis or wound healing, and must generate and withstand substantial forces. The cellular motility responses to environmental forces are represented by their force-velocity relation, which has been measured for fish keratocytes but remains unexplained. Even pN opposing forces slow down lamellipodium motion by three orders of magnitude.
View Article and Find Full Text PDFCell motility is a fundamental process associated with many phenomena in nature, such as immune response, wound healing, and cancer metastasis. In these processes, cells must squeeze through cell layers, and we characterize this ability to actively produce forces and simultaneously adapt their shapes. We have measured forward forces up to 15 nN that a migrating keratocyte was able to generate, in order to adjust its shape and successfully force its way under and past an obstacle.
View Article and Find Full Text PDF