Outer hair cells (OHCs) are innervated by type II afferent fibers of as yet unknown function. It is still a matter of debate whether OHCs perform exocytosis. If so, they would require presynaptic Ca2+ channels at their basal poles where the type II fibers make contacts.
View Article and Find Full Text PDFCochlear outer hair cells (OHCs) terminally differentiate prior to the onset of hearing. During this time period, thyroid hormone (TH) dramatically influences inner ear development. It has been shown recently that TH enhances the expression of the motor protein prestin via liganded TH receptor beta (TRbeta) while in contrast the expression of the potassium channel KCNQ4 is repressed by unliganded TRalpha1.
View Article and Find Full Text PDFThyroid hormone (TH) is essential for the development of hearing. Lack of TH in a critical developmental period from embryonic day 17 to postnatal day 12 (P12) in rats and mice leads to morphological and functional deficits in the organ of Corti and the auditory pathway. We investigated the effects of TH on inner hair cells (IHCs) using patch-clamp recordings, capacitance measurements, and immunocytochemistry in hypothyroid rats and athyroid Pax8-/- mice.
View Article and Find Full Text PDFMutations of the human otoferlin gene lead to an autosomal recessive nonsyndromic form of prelingual, sensorineural deafness (deafness autosomal recessive 9, DFNB9). Several studies have demonstrated expression of otoferlin in the inner ear and brain, and suggested a role of otoferlin in Ca(2+)-triggered exocytosis. So far, otoferlin expression profiles were solely based on the detection of mRNA.
View Article and Find Full Text PDFThe 10-member SLC26 gene family encodes anion exchangers of which SLC26A5 appears to be restricted to the outer hair cells of the inner ear. Here, the so-called prestin protein acts as a molecular motor, thought to be responsible for active mechanical amplification in the mammalian cochlea. We introduce special characteristics of SLC26A5 which may have relevance for other members of the family as well.
View Article and Find Full Text PDFThyroid hormone (TH or T3) and TH-receptor beta (TRbeta) have been reported to be relevant for cochlear development and hearing function. Mutations in the TRbeta gene result in deafness associated with resistance to TH syndrome. The effect of TRalpha1 on neither hearing function nor cochlear T3 target genes has been described to date.
View Article and Find Full Text PDFThe large conductance voltage- and Ca2+-activated potassium (BK) channel has been suggested to play an important role in the signal transduction process of cochlear inner hair cells. BK channels have been shown to be composed of the pore-forming alpha-subunit coexpressed with the auxiliary beta1-subunit. Analyzing the hearing function and cochlear phenotype of BK channel alpha-(BKalpha-/-) and beta1-subunit (BKbeta1-/-) knockout mice, we demonstrate normal hearing function and cochlear structure of BKbeta1-/- mice.
View Article and Find Full Text PDFCiliary neurotrophic factor (CNTF) signals via a tripartite receptor complex consisting of the glycosyl-phosphatidylinositol (GPI)-anchored CNTF receptor (CNTF-R), the leukaemia inhibitory factor receptor (LIF-R) and the interleukin-6 (IL-6) signal transducer gp130. We have recently reported that gp130 is endogenously expressed in the polarised epithelial model cell line Madin-Darby canine kidney (MDCK) and we have demonstrated a preferential basolateral localisation of this protein. In the present study we show that MDCK cells also express the LIF-R and respond to stimulation with human LIF by activation of tyrosine phosphorylation of signal transducer and activator of transcription-3 (STAT3), both however in an unpolarised fashion.
View Article and Find Full Text PDF