Human vascular endothelial growth factor receptor type 2 (h-VEFGR2) is a receptor tyrosine kinase involved in the angiogenesis process and regarded as an interesting target for the design of anticancer drugs. Its activation/inactivation mechanism is related to conformational changes in its cytoplasmatic kinase domain, involving first among all the αC-helix in N-lobe and the A-loop in C-lobe. Affinity of inhibitors for the active or inactive kinase form could dictate the open or closed conformation of the A-loop, thus making the different conformations of the kinase domain receptor (KDR) domain different drug targets in drug discovery.
View Article and Find Full Text PDFThree novel 2,7-substituted acridine derivatives were designed and synthesized to investigate the effect of this functionalization on their interaction with double-stranded and G-quadruplex DNA. Detailed investigations of their ability to bind both forms of DNA were carried out by using spectrophotometric, electrophoretic, and computational approaches. The ligands in this study are characterized by an open-chain (L1) or a macrocyclic (L2, L3) framework.
View Article and Find Full Text PDFA combined quantum mechanical (QM)-polarized docking and molecular dynamics approach to study the binding mode and to predict the binding affinity of ligands acting at the alpha4beta2-nAChR is presented. The results obtained in this study indicate that the quantum mechanical/molecular mechanics docking protocol well describes the charge-driven interactions occurring in the binding of nicotinic agonists, and it is able to represent the polarization effects on the ligand exerted by the surrounding atoms of the receptor at the binding site. This makes it possible to properly score agonists of alpha4beta2-nAChR and to reproduce the experimental binding affinity data with good accuracy, within a mean error of 2.
View Article and Find Full Text PDFTotal synthesis of naturally occurring casuarine (1) and the first total synthesis of casuarine 6-O-alpha-glucoside (2) were achieved through complete stereoselective nitrone cycloaddition, Tamao-Fleming oxidation and selective alpha-glucosylation as key steps. Biological assays of the two compounds proved their strong and selective inhibitory properties towards glucoamylase NtMGAM and trehalase Tre37A, respectively, which place them among the most powerful inhibitors of these enzymes. The structural determination of the complexes of NtMGAM with 1 and of Tre37A with 2 revealed interesting similarities in the catalytic sites of these two enzymes which belong to different families and clans.
View Article and Find Full Text PDFThe hydrolytic ability toward plasmid DNA of a mononuclear and a binuclear Zn(II) complex with two macrocyclic ligands, containing respectively a phenanthroline (L1) and a dipyridine moiety (L2), was analyzed at different pH values and compared with their activity in bis( p-nitrophenyl)phosphate (BNPP) cleavage. Only the most nucleophilic species [ZnL1(OH)]+ and [Zn2L2(OH)2]2+, present in solution at alkaline pH values, are active in BNPP cleavage, and the dinuclear L2 complex is remarkably more active than the mononuclear L1 one. Circular dichroism and unwinding experiments show that both complexes interact with DNA in a nonintercalative mode.
View Article and Find Full Text PDFThe screening of the inhibition capabilities of dye-like small molecules from a focused library against both human PRMT1 and Aspergillus nidulans RmtA is reported as well as molecular modeling studies (homology modeling, molecular docking, and 3-D QSAR) of the catalytic domain of the PRMT1 fungal homologue RmtA. The good correlation between computational and biological results makes RmtA a reliable tool for screening arginine methyltransferase inhibitors. In addition, the binding mode analyses of tested derivatives reveal the crucial role of two regions, the pocket formed by Ile12, His13, Met16, and Thr49 and the SAM cisteinic binding site subsite.
View Article and Find Full Text PDFThe growing interest in nicotinic receptors, because of their wide expression in neuronal and non-neuronal tissues and their involvement in several important CNS pathologies, has stimulated the synthesis of a high number of ligands able to modulate their function. These membrane proteins appear to be highly heterogeneous, and still only incomplete information is available on their structure, subunit composition, and stoichiometry. This is due to the lack of selective ligands to study the role of nAChR under physiological or pathological conditions; so far, only compounds showing selectivity between alpha4beta2 and alpha7 receptors have been obtained.
View Article and Find Full Text PDFThe present paper reports the synthesis and binding studies of new 2-phenylpyrazolo[1,5-a]pyrimidin-3-yl acetamides as selective Peripheral Benzodiazepine Receptor (PBR) ligands. The variability of substituents at the 3-position was investigated and a 3D-QSAR model was proposed to evaluate the effect of different substitutions on the acetamide moiety. In addition, a subset of the novel compounds showing high affinity for PBR was tested for their ability to modulate the steroid biosynthesis in C6 glioma cells.
View Article and Find Full Text PDFTwo 3D QSAR Grid/Golpe models, differing in the alignment criterion of the studied phosphodiesterase 4 (PDE4) inhibitors, were compared. The docking-guided alignment, obtained by exploiting the known 3D structure of the PDE4, was used to test and validate the field-fit alignment solution proposed by FIGO procedure. The analysis of the direct (docking) and indirect (FIGO) superposition methodologies occurs through the comparison of the respective PLS coefficient maps.
View Article and Find Full Text PDFA pharmacophore model for the sigma-2 receptor was derived using GRIND (GRid INdependent Descriptors) descriptors arising from a 3D-level procedure whose main prerogative is that it does not require ligand alignment. PLS models for sigma-2 affinity (sigma-2 model: r2=0.83, q2=0.
View Article and Find Full Text PDFAlignment of molecules is a crucial and time-consuming step in any 3D-QSAR study. For this reason, the field interaction and geometrical overlap (FIGO) procedure presented in this paper is particularly relevant because it can provide an objective and automatic superposition of ligands through the computation of an appropriate alignment index (AI). Ligand overlay takes place via a simplex optimization of the AI function.
View Article and Find Full Text PDFNew 3-aryl-6-(3-thienyl)pyrazolo[1,5-a]pyrimidin-7-ones (2a-j) are synthesized and evaluated in vitro on Bz/GABA(A) receptors and on recombinant benzodiazepine receptors (alpha x beta 2/3 gamma 2; x = 1-3, 5) expressed in HEK293 cells. SAR studies on the new compounds are conducted and molecular modeling is accomplished to better investigate requirements leading to subtype selectivity. Some of the synthesized compounds are tested in vivo to explore their pharmacological effect as a consequence of their high alpha 1 beta 2 gamma 2 subtype selectivity observed in vitro.
View Article and Find Full Text PDF