Publications by authors named "Claudia Benavente"

Ubiquitin-like with PHD and RING finger domains 1 (UHRF1) is an essential protein involved in the maintenance of repressive epigenetic marks, ensuring epigenetic stability and fidelity. As an epigenetic regulator, UHRF1 comprises several functional domains (UBL, TTD, PHD, SRA, RING) that are collectively responsible for processes like DNA methylation, histone modification, and DNA repair. UHRF1 is a downstream effector of the RB/E2F pathway, which is nearly universally deregulated in cancer.

View Article and Find Full Text PDF

Small cell lung cancer (SCLC) is a deadly neuroendocrine malignancy, notorious for its rapid tumor growth, early metastasis, and relatively "cold" immune environment. Only standard chemotherapies and a few immune checkpoint inhibitors have been approved for SCLC treatment, revealing an urgent need for novel therapeutic approaches. Moreover, SCLC has been recently recognized as a malignancy with high intratumoral and intertumoral heterogeneity, which explains the modest response rate in some patients and the early relapse.

View Article and Find Full Text PDF

Osteosarcoma (OS) is a primary malignant bone tumor with high metastasis. Poor prognosis highlights a clinical need for novel therapeutic strategies. Exosomes, also known as extracellular vesicles, have been identified as essential players in the modulation of cancer.

View Article and Find Full Text PDF

Loss-of-function mutations at the retinoblastoma (RB1) gene are associated with increased mortality, metastasis, and poor therapeutic outcome in several cancers, including osteosarcoma. However, the mechanism(s) through which RB1 loss worsens clinical outcome remains understudied. Ubiquitin-like with PHD and Ring Finger domains 1 (UHRF1) has been identified as a critical downstream effector of the RB/E2F signaling pathway that is overexpressed in various cancers.

View Article and Find Full Text PDF

Mutations that result in the loss of function of pRB were first identified in retinoblastoma and since then have been associated with the propagation of various forms of cancer. pRB is best known for its key role as a transcriptional regulator during cell cycle exit. Beyond the ability of pRB to regulate transcription of cell cycle progression genes, pRB can remodel chromatin to exert several of its other biological roles.

View Article and Find Full Text PDF

How stem cells give rise to epidermis is unclear despite the crucial role the epidermis plays in barrier and appendage formation. Here we use single cell-RNA sequencing to interrogate basal stem cell heterogeneity of human interfollicular epidermis and find four spatially distinct stem cell populations at the top and bottom of rete ridges and transitional positions between the basal and suprabasal epidermal layers. Cell-cell communication modeling suggests that basal cell populations serve as crucial signaling hubs to maintain epidermal communication.

View Article and Find Full Text PDF

Retinoblastoma is an aggressive childhood cancer of the developing retina that initiates by biallelic RB1 gene inactivation. Tumor progression in retinoblastoma is driven by epigenetics, as retinoblastoma genomes are stable, but the mechanism(s) that drive these epigenetic changes remain unknown. Lymphoid-specific helicase (HELLS) protein is an epigenetic modifier directly regulated by the RB/E2F pathway.

View Article and Find Full Text PDF

Osteosarcoma is the most common primary bone malignancy in children and adolescents. Among the various molecular mechanisms implicated in osteosarcomagenesis, the RB-E2F pathway is of particular importance as virtually all cases of osteosarcoma display alterations in the RB-E2F pathway. In this study, we examined the transcription factor E2F family members that are associated with increased malignancy in -null osteosarcoma tumors.

View Article and Find Full Text PDF

Osteosarcoma is the most common primary malignant neoplasm of bone and typically occurs in children and young adults. As a highly metastatic malignancy, 15-20% of osteosarcoma patients are diagnosed after the tumor has already metastasized (typically to the lungs), which translates to 5-year survival rates of <40%. Here, we tested the effect of the cyclin-dependent kinase (CDK) inhibitor flavopiridol (alvocidib) in U2OS, SaOS-2, SJSA-1, and 143B osteosarcoma tumor cells and .

View Article and Find Full Text PDF

Retinal development requires precise temporal and spatial coordination of cell cycle exit, cell fate specification, cell migration and differentiation. When this process is disrupted, retinoblastoma, a developmental tumor of the retina, can form. Epigenetic modulators are central to precisely coordinating developmental events, and many epigenetic processes have been implicated in cancer.

View Article and Find Full Text PDF

Retinoblastoma is a rare pediatric cancer of the developing retina that initiates with biallelic inactivation of the RB1 gene. Murine models of retinoblastoma provide excellent tools for preclinical studies as well as for the study of the biological processes that drive tumorigenesis following Rb loss. In this chapter, we describe several genetically engineered mouse and orthotopic human xenograft models of retinoblastoma and discuss the advantages and disadvantages of these models.

View Article and Find Full Text PDF

Retinoblastoma is a pediatric tumor of the developing retina from which the genetic basis for cancer development was first described. Inactivation of both copies of the RB1 gene is the predominant initiating genetic lesion in retinoblastoma and is rate limiting for tumorigenesis. Recent whole-genome sequencing of retinoblastoma uncovered a tumor that had no coding-region mutations or focal chromosomal lesions other than in the RB1 gene, shifting the paradigm in the field.

View Article and Find Full Text PDF

Ewing sarcoma (EWS) is a tumor of the bone and soft tissue that primarily affects adolescents and young adults. With current therapies, 70% of patients with localized disease survive, but patients with metastatic or recurrent disease have a poor outcome. We found that EWS cell lines are defective in DNA break repair and are sensitive to PARP inhibitors (PARPis).

View Article and Find Full Text PDF

The retinoblastoma (Rb) family of proteins are key regulators of cell cycle exit during development and their deregulation is associated with cancer. Rb is critical for normal retinal development and germline mutations lead to retinoblastoma making retinae an attractive system to study Rb family signaling. Rb coordinates proliferation and differentiation through the E2f family of transcription factors, a critical interaction for the role of Rb in retinal development and tumorigenesis.

View Article and Find Full Text PDF

Genetically engineered mouse models (GEMMs) of human cancer are important for advancing our understanding of tumor initiation and progression as well as for testing novel therapeutics. Retinoblastoma is a childhood cancer of the developing retina that initiates with biallelic inactivation of the RB1 gene. GEMMs faithfully recapitulate the histopathology, molecular, cellular, morphometric, neuroanatomical and neurochemical features of human retinoblastoma.

View Article and Find Full Text PDF

Sirtuins (SIRTs) and poly(ADP-ribose) polymerases (PARPs), NAD(+)-dependent enzymes, link cellular energy status with responses to environmental stresses. Skin is frequently exposed to the DNA damaging effects of UV irradiation, a known etiology in skin cancer. Thus, understanding the defense mechanisms in response to UV, including the role of SIRTs and PARPs, may be important in developing skin cancer prevention strategies.

View Article and Find Full Text PDF

Retinoblastoma is an aggressive childhood cancer of the developing retina that is initiated by the biallelic loss of RB1. Tumours progress very quickly following RB1 inactivation but the underlying mechanism is not known. Here we show that the retinoblastoma genome is stable, but that multiple cancer pathways can be epigenetically deregulated.

View Article and Find Full Text PDF

Background: Chronic UV skin exposure leads to epidermal differentiation defects in humans that can be largely restored by pharmacological doses of nicotinic acid. Nicotinic acid has been identified as a ligand for the human G-protein-coupled receptors GPR109A and GPR109B that signal through G(i)-mediated inhibition of adenylyl cyclase. We have examined the expression, cellular distribution, and functionality of GPR109A/B in human skin and skin derived epidermal cells.

View Article and Find Full Text PDF

The maintenance and regulation of cellular NAD(P)(H) content and its influence on cell function involves many metabolic pathways, some of which remain poorly understood. Niacin deficiency in humans, which leads to low NAD status, causes sun sensitivity in skin, indicative of deficiencies in responding to UV damage. Animal models of niacin deficiency demonstrate genomic instability and increased cancer development in sensitive tissues including skin.

View Article and Find Full Text PDF

NAD(+) is a substrate for many enzymes, including poly(ADP-ribose) polymerases and sirtuins, which are involved in fundamental cellular processes including DNA repair, stress responses, signaling, transcription, apoptosis, metabolism, differentiation, chromatin structure, and life span. Because these molecular processes are important early in cancer development, we developed a model to identify critical NAD-dependent pathways potentially important in early skin carcinogenesis. Removal of niacin from the cell culture medium allowed control of intracellular NAD.

View Article and Find Full Text PDF

Uncommitted mesenchymal stem cells (MSC), upon commitment and differentiation give rise to several mature mesenchymal lineages. Although the involvement of specific growth factors, including FGF2, in the development of committed MSC is known, the effect of FGF2 on uncommitted progenitors remains unclear. We have analyzed on a comparative basis, the subcellular distribution and mitogenic effect of FGF2 in committed and uncommitted MSC prepared from human bone marrow.

View Article and Find Full Text PDF

Purpose: The aim of this study was to investigate whether interleukin-1beta (IL-1beta), interleukin-1 receptor antagonist (IL-1ra), or soluble IL-1 receptor II (sIL-1RII) in synovial fluid or plasma is associated with joint pain or signs of tissue destruction in patients with temporomandibular joint (TMJ) involvement of polyarthritides.

Patients And Methods: Forty-three patients with TMJ involvement of polyarthritides were included. TMJ resting pain, tenderness to palpation, pressure pain threshold, pain on mandibular movement, and anterior open bite were assessed.

View Article and Find Full Text PDF