Blanco-Blázquez, V. et al. Swine models of aneurysmal diseases for training and research.
View Article and Find Full Text PDFTissue engineering is a promising methodology to produce advanced therapy medicinal products (ATMPs). We have developed personalized tissue engineered veins (P-TEV) as an alternative to autologous or synthetic vascular grafts utilized in reconstructive vein surgery. Our hypothesis is that individualization through reconditioning of a decellularized allogenic graft with autologous blood will prime the tissue for efficient recellularization, protect the graft from thrombosis, and decrease the risk of rejection.
View Article and Find Full Text PDFAcute myocardial infarction (AMI) is the consequence of an acute interruption of myocardial blood flow delimiting an area with ischemic necrosis. The loss of cardiomyocytes initiates cardiac remodeling in the myocardium, leading to molecular changes in an attempt to recover myocardial function. The purpose of this study was to unravel the differences in the molecular profile between ischemic and remote myocardium after AMI in an experimental model.
View Article and Find Full Text PDFTherapy microencapsulation allows minimally invasive, safe, and effective administration. Hepatocyte growth factor (HGF) has angiogenic, anti-inflammatory, anti-apoptotic, and anti-fibrotic properties. Our objective was to evaluate the cardiac safety and effectiveness of intracoronary (IC) administration of HGF-loaded extended release microspheres in an acute myocardial infarction (AMI) swine model.
View Article and Find Full Text PDFAcute myocardial infarction (AMI) is a manifestation of ischemic heart disease where the immune system plays an important role in the re-establishment of homeostasis. We hypothesize that the anti-inflammatory activity of secretomes from menstrual blood-derived mesenchymal stromal cells (S-MenSCs) and IFNγ/TNFα-primed MenSCs (S-MenSCs*) may be considered a therapeutic option for the treatment of AMI. To assess this hypothesis, we have evaluated the effect of S-MenSCs and S-MenSCs* on cardiac function parameters and the involvement of immune-related genes using a porcine model of AMI.
View Article and Find Full Text PDFLarge animal models, specifically swine, are widely used to research cardiovascular diseases and therapies, as well as for training purposes. This paper describes two different aneurysmal swine models that may help researchers to study new therapies for aneurysmal diseases. These aneurysmal models are created by surgically adding a pouch of tissue to carotid arteries in swine.
View Article and Find Full Text PDFThe administration of cardiosphere-derived cells (CDCs) after acute myocardial infarction (AMI) is very promising. CDC encapsulation in alginate-poly-l-lysine-alginate (APA) could increase cell survival and adherence. The intrapericardial (IP) approach potentially achieves high concentrations of the therapeutic agent in the infarcted area.
View Article and Find Full Text PDFThe epicardial administration of therapeutics via the pericardial sac offers an attractive route, since it is minimally invasive and carries no risks of coronary embolization. The aim of this study was to assess viability, safety and effectiveness of cardiosphere-derived cells (CDCs), their extracellular vesicles (EVs) or placebo administered via a mini-thoracotomy 72 h after experimental infarction in swine. The epicardial administration was completed successfully in all cases in a surgery time (knife-to-skin) below 30 min.
View Article and Find Full Text PDFHuman cardiac progenitor cells (hCPC) are considered a good candidate in cell therapy for ischemic heart disease, demonstrating capacity to improve functional recovery after myocardial infarction (MI), both in small and large preclinical animal models. However, improvements are required in terms of cell engraftment and efficacy. Based on previously published reports, insulin-growth factor 1 (IGF-1) and hepatocyte growth factor (HGF) have demonstrated substantial cardioprotective, repair and regeneration activities, so they are good candidates to be evaluated in large animal model of MI.
View Article and Find Full Text PDFCardiosphere-derived cells (CDCs) encapsulated within alginate-poly-L-lysine-alginate (APA) microcapsules present a promising treatment alternative for myocardial infarction. However, clinical translatability of encapsulated CDCs requires robust long-term preservation of microcapsule and cell stability, since cell culture at 37 °C for long periods prior to patient implantation involve high resource, space and manpower costs, sometimes unaffordable for clinical facilities. Cryopreservation in liquid nitrogen is a well-established procedure to easily store cells with good recovery rate, but its effects on encapsulated cells are understudied.
View Article and Find Full Text PDFTransl Androl Urol
February 2021
Background: The purpose was to assess the association between prostate infarction and prostate volume (PV) reduction after prostatic artery embolization (PAE) and define the best time point in detection of prostate infarction.
Methods: Ten male beagles (3.5-6.
Background: Prostatic artery embolization (PAE) is a minimally invasive technique for the management of symptomatic benign prostatic hyperplasia (BPH) relieving the lower urinary tract symptoms in patients. Various embolic agents have been tested in animal models and subsequently used in human patients. The purpose of this study was to evaluate the technical feasibility, effectiveness, and safety of PAE with polyethylene glycol microspheres in a canine spontaneous BPH model.
View Article and Find Full Text PDFThe porcine ischemia-reperfusion model is one of the most commonly used for cardiology research and for testing interventions for myocardial regeneration. In creating ischemic reperfusion injury, the anesthetic protocol is important for assuring hemodynamic stability of the animal during the induction of the experimental lesion and may affect its postoperative survival. This paper reviews the many drugs and anesthetic protocols used in recent studies involving porcine models of ischemiareperfusion injury.
View Article and Find Full Text PDFInsulin-like growth factor-1 (IGF-1) has demonstrated beneficial effects after myocardial infarction (MI). Microencapsulation of IGF-1 could potentially improve results. We aimed to test the effect of an intracoronary (IC) infusion of microencapsulated IGF-1 in a swine acute MI model.
View Article and Find Full Text PDFPreclinical studies in cardiovascular medicine are necessary to translate basic research to the clinic. The porcine model has been widely used to understand the biological mechanisms involved in cardiovascular disorders for which purpose different closed-chest models have been developed in the last years to mimic the pathophysiological events seen in human myocardial infarction. In this work, we studied hematological, biochemical and immunological parameters, as well as Magnetic resonance derived cardiac function measurements obtained from a swine myocardial infarction model.
View Article and Find Full Text PDFCanine prostate is widely used as animal model in the preclinical evaluation of emerging therapeutic interventions. Spontaneous benign prostatic hyperplasia (BPH) is common in adult intact male dogs with two distinct pathological types: glandular and complex form of prostatic hyperplasia. The complex form of prostatic hyperplasia, usually occurring in older dogs, represents an ideal model because of its unique pathologic feature, including not only glandular hyperplasia but also an increase in prostate stromal components.
View Article and Find Full Text PDFThe high prevalence of prostate cancer (PCa) in elderly men and technical advances in early detection of localized PCa have led to continued efforts to develop new therapeutic options of minimally invasive nature in current urologic oncology community. Increasing newly emerging therapies are undergoing preclinical tests on the technical feasibility, efficacy and safety in animal experiments. The dog is an ideal large animal because of its similar anatomy to human and the capability allowing the use of the same medical devices applied in future clinical trials.
View Article and Find Full Text PDFStem Cell Res Ther
July 2016
Background: Insulin-like growth factor 1 (IGF-1) and hepatocyte growth factor (HGF) are among the most promising growth factors for promoting cardiorepair. Here, we evaluated the combination of cell- and gene-based therapy using mesenchymal stem cells (MSC) genetically modified to overexpress IGF-1 or HGF to treat acute myocardial infarction (AMI) in a porcine model.
Methods: Pig MSC from adipose tissue (paMSC) were genetically modified for evaluation of different therapeutic strategies to improve AMI treatment.
Cardiovascular diseases are a major health concern and therefore an important topic in biomedical research. Large animal models allow researchers to assess the safety and efficacy of new cardiovascular procedures in systems that resemble human anatomy; additionally, they can be used to emulate scenarios for training purposes. Among the many biomedical models that are described in published literature, it is important that researchers understand and select those that are best suited to achieve the aims of their research, that facilitate the humane care and management of their research animals and that best promote the high ethical standards required of animal research.
View Article and Find Full Text PDFPathological features of benign prostatic hyperplasia (BPH) dictate various responses to prostatic artery embolization (PAE). Typically, BPH originates in the transition zone and periurethral region, where should be considered the primary target area in PAE procedures. Given that histological heterogeneity of components in hyperplasia nodules, epithelial or stromal, identifying the more responsive nodules to PAE will have clinical implications.
View Article and Find Full Text PDFRationale of prostatic artery embolization (PAE) in the treatment of symptomatic benign prostatic hyperplasia is conventionally believed to include two parts: shrinkage of the enlarged prostate gland as a result of PAE-induced ischemic infarction and potential effects to relax the increased prostatic smooth muscle tone by reducing the number and density of α1-adrenergic receptor in the prostate stroma. This review describes new insights into the likely mechanisms behind PAE, such as ischemia-induced apoptosis, apoptosis enhanced by blockage of androgens circulation to the embolized prostate, secondary denervation following PAE, and potential effect of nitric oxide pathway immediately after embolization. Studies on therapeutic mechanisms in PAE may shed light on potentially new treatment strategies and development of novel techniques.
View Article and Find Full Text PDFBackground: The optimal timing of cardiac stem cells administration is still unclear. We assessed the safety of same-day and delayed (one week) delivery and the possible influence of the timing on the therapeutic outcomes of allogeneic porcine cardiac stem cells administration after acute myocardial infarction in a closed-chest ischemia-reperfusion model.
Methods: Female swine surviving 90 min occlusion of the mid left anterior descending coronary artery received an intracoronary injection of 25x10(6) porcine cardiac stem cells either two hours (n = 5, D0) or 7 days (n = 6, D7) after reperfusion.
Myocardial infarction, even after reperfusion, leads to significant loss of cardiomyocytes and to a maladaptive remodeling process. A possibility gaining attention as an ancillary therapy is the use of cardiac-derived cell products, with early stage clinical trials reporting highly promising results with autologous cells. However, an autologous therapy presents limitations, such as timeframe of therapy, cell processing and culture costs, risks posed to the patient by the tissue harvesting, etc.
View Article and Find Full Text PDFOur aim was to develop an easy-to-induce, reproducible, and low mortality clinically relevant closed-chest model of chronic myocardial infarction in swine using intracoronary ethanol and characterize its evolution using MRI and pathology. We injected 3-4 mL of 100% ethanol into the mid-LAD of anesthetized swine. Heart function and infarct size were assessed serially using MRI.
View Article and Find Full Text PDF