The original version of this article unfortunately contained a mistake. In the author group, the correct family name of Dr. Rebeca is "Blázquez" and the correct family name of Dr.
View Article and Find Full Text PDFAcute myocardial infarction triggers a strong inflammatory response in the affected cardiac tissue. New therapeutic tools based on stem cell therapy may modulate the unbalanced inflammation in the damaged cardiac tissue, contributing to the resolution of this pathological condition. The main goal of this study was to analyze the immunomodulatory effects of cardiosphere-derived cells (CDCs) and their extracellular vesicles (EV-CDCs), delivered by intrapericardial administration in a clinically relevant animal model, during the initial pro-inflammatory phase of an induced myocardial infarction.
View Article and Find Full Text PDFBackground: Allogeneic cardiac-derived progenitor cells (CPC) without immunosuppression could provide an effective ancillary therapy to improve cardiac function in reperfused myocardial infarction. We set out to perform a comprehensive preclinical feasibility and safety evaluation of porcine CPC (pCPC) in the infarcted porcine model, analyzing biodistribution and mid-term efficacy, as well as safety in healthy non-infarcted swine.
Methods: The expression profile of several pCPC isolates was compared with humans using both FACS and RT-qPCR.
Background: Acute myocardial infarction (AMI) is one of the most deleterious conditions leading to cardiovascular diseases and mortality. The importance of an early and accurate diagnosis assures immediate medical treatments, which are fundamental to reduce mortality and improve prognoses. AMI is associated to an inflammatory response which includes the increase of circulating inflammatory cytokines, chemokines and immune cell activation.
View Article and Find Full Text PDFIntroduction: The intrapericardial delivery has been defined as an efficient method for pharmacological agent delivery. Here we hypothesize that intrapericardial administration of cardiosphere-derived cells (CDCs) may have an immunomodulatory effect providing an optimal microenvironment for promoting cardiac repair. To our knowledge, this is the first report studying the effects of CDCs for myocardial repair using the intrapericardial delivery route.
View Article and Find Full Text PDFThe appropriate administration route for cardiovascular cell therapy is essential to ensure the viability, proliferative potential, homing capacity and implantation of transferred cells. At the present, the intrapericardial administration of pharmacological agents is considered an efficient method for the treatment of cardiovascular diseases. However, only a few reports have addressed the question whether the intrapericardial delivery of Mesenchymal Stem Cells (MSCs) could be an optimal administration route.
View Article and Find Full Text PDFBackground: Endo-epicardial substrate ablation reduces ventricular tachycardia (VT) recurrences; however, not all patients in whom the epicardium is explored have a VT substrate. Contrast-enhanced magnetic resonance imaging (ceMRI) is used to characterize VT substrate after myocardial infarction.
Objective: The purpose of this study was to determine if epicardial VT substrate can be identified noninvasively by ceMRI-based endo-epicardial signal intensity (SI) mapping.