Publications by authors named "Claudia Backes"

Article Synopsis
  • Graphite can be turned into nanosheets with semimetallic properties, but its work function limits compatible materials for printed electronic devices, prompting the search for other 2D materials.
  • Metal diborides, layered crystals with semimetallic qualities, are explored as potential substitutes, and a new inert exfoliation process for making quasi-2D nanoplatelets (MgB, CrB, ZrB) is introduced with minimal oxidation.
  • The study validates these nanoplatelets for electrical applications and presents a cost-effective method to protect them, showcasing their effectiveness in creating strain sensors, positioning them as viable alternatives to graphene in electronics.
View Article and Find Full Text PDF

Liquid phase exfoliation (LPE) has been used for the successful fabrication of nanosheets from a large number of van der Waals materials. While this allows to study fundamental changes of material properties' associated with reduced dimensions, it also changes the chemistry of many materials due to a significant increase of the effective surface area, often accompanied with enhanced reactivity and accelerated oxidation. To prevent material decomposition, LPE and processing in inert atmosphere have been developed, which enables the preparation of pristine nanomaterials, and to systematically study compositional changes over time for different storage conditions.

View Article and Find Full Text PDF

Antiferromagnets are promising materials for future opto-spintronic applications since they show spin dynamics in the THz range and no net magnetization. Recently, layered van der Waals (vdW) antiferromagnets have been reported, which combine low-dimensional excitonic properties with complex spin-structure. While various methods for the fabrication of vdW 2D crystals exist, formation of large area and continuous thin films is challenging because of either limited scalability, synthetic complexity, or low opto-spintronic quality of the final material.

View Article and Find Full Text PDF

Monolayer transition metal dichalcogenides (TMDs) are being investigated as active materials in optoelectronic devices due to their strong excitonic effects. While mechanical exfoliation (ME) of monolayer TMDs is limited to small areas, these materials can also be exfoliated from their parent layered materials via high-volume liquid phase exfoliation (LPE). However, it is currently considered that LPE-synthesized materials show poor optoelectronic performance compared to ME materials, such as poor photoluminescence quantum efficiencies (PLQEs).

View Article and Find Full Text PDF

We present a method to anneal devices based on graphite films on paper and polycarbonate substrates. The devices are created using four different methods: spray-on films, graphite pencil-drawn films, liquid-phase exfoliated graphite films, and graphite powder abrasion-applied films. We characterize the optical properties of the films before and after laser annealing and report the two-terminal resistance of the devices for increased laser power density.

View Article and Find Full Text PDF

Sonication-assisted liquid phase exfoliation was applied to six different layered coordination polymers (CPs) in aqueous surfactant solution. The resulting nanosheets were investigated for structural and compositional integrity and microscopic analysis gives insights into the relationship between the crystal structure of the materials and their exfoliability. Larger open pores seem to favour the production of nanosheets with higher aspect ratio of lateral size to thickness.

View Article and Find Full Text PDF

Liquid phase exfoliation (LPE) is a popular method to create dispersions of two-dimensional nanosheets from layered inorganic van der Waals crystals. Here, it is applied to orthorhombic and triclinic single crystals of the organic semiconductor rubrene with only noncovalent interactions (mainly π-π) between the molecules. Distinct nanorods and nanobelts of rubrene are formed, stabilized against aggregation in aqueous sodium cholate solution, and isolated by liquid cascade centrifugation.

View Article and Find Full Text PDF

We report on the investigation of thermal transport in noncured silicone composites with graphene fillers of different lateral dimensions. Graphene fillers are comprised of few-layer graphene flakes with lateral sizes in the range from 400 to 1200 nm and the number of atomic planes from 1 to ∼100. The distribution of the lateral dimensions and thicknesses of graphene fillers has been determined via atomic force microscopy statistics.

View Article and Find Full Text PDF

Group VI transition metal dichalcogenides (TMDs) are considered to be chemically widely inert, but recent reports point toward an oxidation of monolayered sheets in ambient conditions, due to defects. To date, the degradation of monolayered TMDs is only studied on individual, substrate-supported nanosheets with varying defect type and concentration, strain, and in an inhomogeneous environment. Here, degradation kinetics of WS nanosheet ensembles in the liquid phase are investigated through photoluminescence measurements, which selectively probe the monolayers.

View Article and Find Full Text PDF

Liquid phase exfoliation (LPE) is widely used to produce colloidal dispersions of nanomaterials, in particular two-dimensional nanosheets. The degree of exfoliation, i.e.

View Article and Find Full Text PDF

Over the past 15 years, two-dimensional (2D) materials have been studied and exploited for many applications. In many cases, 2D materials are formed by the exfoliation of layered crystals such as transition-metal disulfides. However, it has recently become clear that it is possible to exfoliate nonlayered materials so long as they have a nonisotropic bonding arrangement.

View Article and Find Full Text PDF

A new layered mesoporous Zr-MOF of composition [ZrO(OH)(OAc)L] was synthesized by employing 5-acetamidoisophthalic acid (HL) using acetic acid as the solvent. The new MOF, denoted as CAU-45, exhibits a honeycomb structure of stacked layers which comprise both hexa- and dodecanucelar zirconium clusters. Its structure was solved from submicrometer-sized crystals by continuous rotation electron diffraction (cRED).

View Article and Find Full Text PDF

High quality opal-like photonic crystals containing graphene are fabricated using evaporation-driven self-assembly of soft polymer colloids. A miniscule amount of pristine graphene within a colloidal crystal lattice results in the formation of colloidal crystals with a strong angle-dependent structural color and a stop band that can be reversibly shifted across the visible spectrum. The crystals can be mechanically deformed or can reversibly change color as a function of their temperature, hence their sensitive mechanochromic and thermochromic response make them attractive candidates for a wide range of visual sensing applications.

View Article and Find Full Text PDF

Liquid- phase exfoliation (LPE) is the principal method of producing two-dimensional (2D) materials such as graphene in large quantities with a good balance between quality and cost and is now widely adopted by both the academic and industrial sectors. The fragmentation and exfoliation mechanisms involved have usually been simply attributed to the force induced by ultrasound and the interaction with the solvent molecules. Nonetheless, little is known about how they actually occur, , how thick and large graphite crystals can be exfoliated into thin and small graphene flakes.

View Article and Find Full Text PDF

In recent years, various functionalization strategies for transition-metal dichalcogenides have been explored to tailor the properties of materials and to provide anchor points for the fabrication of hybrid structures. Herein, new insights into the role of the surfactant in functionalization reactions are described. Using the spontaneous reaction of WS with chloroauric acid as a model reaction, the regioselective formation of gold nanoparticles on WS is shown to be heavily dependent on the surfactant employed.

View Article and Find Full Text PDF

Invited for the cover of this issue are Lutz H. Gade, Claudia Backes, and co-workers at Heidelberg University. The image depicts 2-(1,2,2-triarylvinyl)-pyridines, which are luminogens for aggregation-induced emission which "light up" upon irradiation.

View Article and Find Full Text PDF

Two-dimensional (2D) molybdenum disulfide (MoS ) holds great promise in electronic and optoelectronic applications owing to its unique structure and intriguing properties. The intrinsic defects such as sulfur vacancies (SVs) of MoS nanosheets are found to be detrimental to the device efficiency. To mitigate this problem, functionalization of 2D MoS using thiols has emerged as one of the key strategies for engineering defects.

View Article and Find Full Text PDF

New luminogens for aggregation-induced emission (AIE), which are characterized by a branched cross-conjugated 2,6-bis(1,2,2-triarylvinyl)pyridine motif, have been synthesized exploiting the one-pot Ti-mediated tetraarylation of 2,6-bis(arylethynyl)pyridines. Thin layer solid-state emitters were prepared by spin-coating of the luminogens, while AIE-colloidal dispersions were investigated in terms of optical density and scattering behaviour. This has given insight into particle size distributions, time evolution of the aggregation and the influence of different functionalization patterns on the luminescence of molecular aggregates.

View Article and Find Full Text PDF

2D polymer sheets with six positively charged pyrylium groups at each pore edge in a stacked single crystal can be transformed into a 2D polymer with six pyridines per pore by exposure to gaseous ammonia. This reaction furnishes still a crystalline material with tunable protonation degree at regular nano-sized pores promising as separation membrane. The exfoliation is compared for both 2D polymers with the latter being superior.

View Article and Find Full Text PDF