Interleukin-6 (IL-6) is a key mediator of inflammation. Inhibitors of IL-6 or of its signal transducing receptor gp130 constitute a novel class of anti-inflammatory drugs, which raise great hopes for improved treatments of painful inflammatory diseases such as rheumatoid arthritis. IL-6 and gp130 may enhance pain not only indirectly through their proinflammatory actions but also through a direct action on nociceptors (i.
View Article and Find Full Text PDFTo provide a tool to investigate the mechanisms inducing and maintaining cancer-related pain and hyperalgesia, a soft tissue tumor/metastasis model was developed that is applicable in C57BL/6J wild-type and transgenic mice. We show that the experimental tumor-induced heat hyperalgesia and nociceptor sensitization were prevented by systemic treatment with the tumor necrosis factor alpha (TNFalpha) antagonist etanercept. In naive mice, exogenous TNFalpha evoked heat hyperalgesia in vivo and sensitized nociceptive nerve fibers to heat in vitro.
View Article and Find Full Text PDFLarge-conductance calcium- and voltage-activated potassium channels (BKCa) are dually activated by membrane depolarization and elevation of cytosolic calcium ions (Ca2+). Under normal cellular conditions, BKCa channel activation requires Ca2+ concentrations that typically occur in close proximity to Ca2+ sources. We show that BKCa channels affinity-purified from rat brain are assembled into macromolecular complexes with the voltage-gated calcium channels Cav1.
View Article and Find Full Text PDFCalcium-activated potassium (BK) channels play a central role in regulating multiple physiological processes, from the control of blood flow to neuronal excitability. Coordinated regulation of BK channel activity by changes in actin cytoskeleton dynamics has been implicated in several of these processes and related disease states such as epilepsy and stroke. However, how BK channels interact with the actin cytoskeleton is essentially unknown.
View Article and Find Full Text PDFNeurons are highly specialized cells in which the integration and processing of electrical signals critically depends on the precise localization of ion channels. For large-conductance Ca(2+)- activated K(+) (BK) channels, targeting to presynaptic membranes in hippocampal pyramidal cells was reported; however, functional evidence also suggests a somatodendritic localization. Therefore we re-examined the subcellular distribution of BK channels in mouse hippocampus using a panel of independent antibodies in a combined approach of conventional immunocytochemistry on cultured neurons, pre- and postembedding electron microscopy and immunoprecipitation.
View Article and Find Full Text PDFThe voltage-gated potassium (Kv) channel subunit Kv1.1 is a major constituent of presynaptic A-type channels that modulate synaptic transmission in CNS neurons. Here, we show that Kv1.
View Article and Find Full Text PDFAn antibody against the 442 carboxy-terminal amino acids of the BK channel alpha-subunit detects high immunoreactivity within the telencephalon in cerebral cortices, olfactory bulb, basal ganglia and hippocampus, while lower levels are found in basal forebrain regions and amygdala. Within the diencephalon, high density was found in nuclei of the ventral and dorsal thalamus and the medial habenular nucleus, and low density in the hypothalamus. The fasciculus retroflexus and its termination in the mesencephalic interpeduncular nucleus are prominently stained.
View Article and Find Full Text PDFBackground: Abnormally elevated blood pressure is the most prevalent risk factor for cardiovascular disease. The large-conductance, voltage- and Ca2+-dependent K+ (BK) channel has been proposed as an important effector in the control of vascular tone by linking membrane depolarization and local increases in cytosolic Ca2+ to hyperpolarizing K+ outward currents. However, the BK channel may also affect blood pressure by regulating salt and fluid homeostasis, particularly by adjusting the renin-angiotensin-aldosterone system.
View Article and Find Full Text PDFThe SK2 subtype of small conductance Ca2+-activated K+ channels is widely distributed throughout the central nervous system and modulates neuronal excitability by contributing to the afterhyperpolarization that follows an action potential. Western blots of brain membrane proteins prepared from wild type and SK2-null mice reveal two isoforms of SK2, a 49-kDa band corresponding to the previously reported SK2 protein (SK2-S) and a novel 78-kDa form. Complementary DNA clones from brain and Western blots probed with an antibody specific for the longer form, SK2-L, identified the larger molecular weight isoform as an N-terminally extended SK2 protein.
View Article and Find Full Text PDFTo investigate the distribution of all three SK channel subunits in the mouse central nervous system, we performed immunohistochemistry using sequence-specific antibodies directed against SK1, SK2, and SK3 proteins. Expression of SK1 and SK2 proteins revealed a partly overlapping distribution pattern restricted to a limited number of brain areas (e.g.
View Article and Find Full Text PDFCerebellar ataxia, a devastating neurological disease, may be initiated by hyperexcitability of deep cerebellar nuclei (DCN) secondary to loss of inhibitory input from Purkinje neurons that frequently degenerate in this disease. This mechanism predicts that intrinsic DCN hyperexcitability would cause ataxia in the absence of upstream Purkinje degeneration. We report the generation of a transgenic (Tg) model that supports this mechanism of disease initiation.
View Article and Find Full Text PDFSmall-conductance Ca2+-activated K+ (SK) channels are important for excitability control and afterhyperpolarizations in vertebrate neurons and have been implicated in regulation of the functional state of the forebrain. We have examined the distribution, functional expression, and subunit composition of SK channels in rat brain. Immunoprecipitation detected solely homotetrameric SK2 and SK3 channels in native tissue and their constitutive association with calmodulin.
View Article and Find Full Text PDF