Background: Theobroma cacao, the cocoa tree, is a tropical crop grown for its highly valuable cocoa solids and fat which are the basis of a 200-billion-dollar annual chocolate industry. However, the long generation time and difficulties associated with breeding a tropical tree crop have limited the progress of breeders to develop high-yielding disease-resistant varieties. Development of marker-assisted breeding methods for cacao requires discovery of genomic regions and specific alleles of genes encoding important traits of interest.
View Article and Find Full Text PDFParasitic lifestyle can often relax the constraint on the plastome, leading to gene pseudogenization and loss, and resulting in diverse genomic structures and rampant genome degradation. Although several plastomes of parasitic Cuscuta have been reported, the evolution of parasitism in the family Convolvulaceae which is linked to structural variations and reduction of plastome has not been well investigated. In this study, we assembled and collected 40 plastid genomes belonging to 23 species representing four subgenera of Cuscuta and ten species of autotrophic Convolvulaceae.
View Article and Find Full Text PDFBackground: Plants have complex and dynamic immune systems that have evolved to resist pathogens. Humans have worked to enhance these defenses in crops through breeding. However, many crops harbor only a fraction of the genetic diversity present in wild relatives.
View Article and Find Full Text PDFApples grown in high heat, high light, and low humidity environments are at risk for sun injury disorders like sunburn and associated crop losses. Understanding the physiological and molecular mechanisms underlying sunburn will support improvement of mitigation strategies and breeding for more resilient varieties. Numerous studies have highlighted key biochemical processes involved in sun injury, such as the phenylpropanoid and reactive oxygen species (ROS) pathways, demonstrating both enzyme activities and expression of related genes in response to sunburn conditions.
View Article and Find Full Text PDFHeterotrimeric G proteins - comprising Gα, Gβ, and Gγ subunits - are ubiquitous elements in eukaryotic cell signaling. Plant genomes contain both canonical Gα subunit genes and a family of plant-specific extra-large G protein genes (XLGs) that encode proteins consisting of a domain with Gα-like features downstream of a long N-terminal domain. In this review we summarize phenotypes modulated by the canonical Gα and XLG proteins of arabidopsis and highlight recent studies in maize and rice that reveal dramatic phenotypic consequences of XLG clustered regularly interspaced short palindromic repeats (CRISPR) mutagenesis in these important crop species.
View Article and Find Full Text PDFThe mitochondrial genome of Liriodendron tulipifera exhibits many ancestral angiosperm features and a remarkably slow evolutionary rate, while mitochondrial genomes of other magnoliids remain yet to be characterized. We assembled nine new mitochondrial genomes, representing all genera of perianth-bearing Piperales, as well as for a member of the sister clade: three complete or nearly complete mitochondrial genomes from Aristolochiaceae and six additional draft assemblies including Thottea, Asaraceae, Lactoridaceae, and Hydnoraceae. For comparative purpose, a complete mitochondrial genome was assembled for Saururus, a member of the perianth-less Piperales.
View Article and Find Full Text PDFPlant genome-scale resources are being generated at an increasing rate as sequencing technologies continue to improve and raw data costs continue to fall; however, the cost of downstream analyses remains large. This has resulted in a considerable range of genome assembly and annotation qualities across plant genomes due to their varying sizes, complexity, and the technology used for the assembly and annotation. To effectively work across genomes, researchers increasingly rely on comparative genomic approaches that integrate across plant community resources and data types.
View Article and Find Full Text PDFGenome Biol Evol
January 2023
Mycoheterotrophy is an alternative nutritional strategy whereby plants obtain sugars and other nutrients from soil fungi. Mycoheterotrophy and associated loss of photosynthesis have evolved repeatedly in plants, particularly in monocots. Although reductive evolution of plastomes in mycoheterotrophs is well documented, the dynamics of nuclear genome evolution remains largely unknown.
View Article and Find Full Text PDFWe assess relationships among 192 species in all 12 monocot orders and 72 of 77 families, using 602 conserved single-copy (CSC) genes and 1375 benchmarking single-copy ortholog (BUSCO) genes extracted from genomic and transcriptomic datasets. Phylogenomic inferences based on these data, using both coalescent-based and supermatrix analyses, are largely congruent with the most comprehensive plastome-based analysis, and nuclear-gene phylogenomic analyses with less comprehensive taxon sampling. The strongest discordance between the plastome and nuclear gene analyses is the monophyly of a clade comprising Asparagales and Liliales in our nuclear gene analyses, versus the placement of Asparagales and Liliales as successive sister clades to the commelinids in the plastome tree.
View Article and Find Full Text PDFThe rapid development of sequencing technologies has led to a deeper understanding of plant genomes. However, direct experimental evidence connecting genes to important agronomic traits is still lacking in most non-model plants. For instance, the genetic mechanisms underlying plant architecture are poorly understood in pome fruit trees, creating a major hurdle in developing new cultivars with desirable architecture, such as dwarfing rootstocks in European pear ().
View Article and Find Full Text PDFDisentangling the phylogenetic relationships of taxonomically complex plant groups is often mired by challenges associated with recent speciation, hybridization, complex mating systems, and polyploidy. Here, we perform a phylogenomic analysis of eyebrights (), a group renowned for taxonomic complexity, with the aim of documenting the extent of phylogenetic discordance at both deep and at shallow phylogenetic scales. We generate whole-genome sequencing data and integrate this with prior genomic data to perform a comprehensive analysis of nuclear genomic, nuclear ribosomal (nrDNA), and complete plastid genomes from 57 individuals representing 36 species.
View Article and Find Full Text PDFAristolochia, a genus in the magnoliid order Piperales, has been famous for centuries for its highly specialized flowers and wide medicinal applications. Here, we present a new, high-quality genome sequence of Aristolochia fimbriata, a species that, similar to Amborella trichopoda, lacks further whole-genome duplications since the origin of extant angiosperms. As such, the A.
View Article and Find Full Text PDFGenomic structural variants (SVs) can play important roles in adaptation and speciation. Yet the overall fitness effects of SVs are poorly understood, partly because accurate population-level identification of SVs requires multiple high-quality genome assemblies. Here, we use 31 chromosome-scale, haplotype-resolved genome assemblies of an outcrossing, long-lived tree species that is the source of chocolate-to investigate the fitness consequences of SVs in natural populations.
View Article and Find Full Text PDFGetOrganelle is a state-of-the-art toolkit to accurately assemble organelle genomes from whole genome sequencing data. It recruits organelle-associated reads using a modified "baiting and iterative mapping" approach, conducts de novo assembly, filters and disentangles the assembly graph, and produces all possible configurations of circular organelle genomes. For 50 published plant datasets, we are able to reassemble the circular plastomes from 47 datasets using GetOrganelle.
View Article and Find Full Text PDFHost-parasite coevolution can maintain high levels of genetic diversity in traits involved in species interactions. In many systems, host traits exploited by parasites are constrained by use in other functions, leading to complex selective pressures across space and time. Here, we study genome-wide variation in the staple crop (L.
View Article and Find Full Text PDFIn this study we isolated and performed in silico analysis of a putative coclaurine N-methyltransferase (CNMT) from the basal angiosperm Aristolochia fimbriata. The Aristolochiaceae plant family produces alkaloids similar to the Papavaraceae family, and CNMTs are central enzymes in biosynthesis pathways producing compounds of ethnopharmacological interest. We used bioinformatics and computational tools to predict a three-dimensional homology model and to investigate the putative function of the protein and its mechanism for methylation.
View Article and Find Full Text PDF-species small regulatory RNAs (sRNAs) are delivered to host plants from diverse pathogens and parasites and can target host mRNAs. How -species sRNAs can be effective on diverse hosts has been unclear. Multiple species of the parasitic plant produce -species sRNAs that collectively target many host mRNAs.
View Article and Find Full Text PDFCowpea (Vigna unguiculata) cultivar B301 is resistant to races SG4 and SG3 of the root parasitic weed Striga gesnerioides, developing a hypersensitive response (HR) at the site of parasite attachment. By contrast, race SG4z overcomes B301 resistance and successfully parasitises the plant. Comparative transcriptomics and in silico analysis identified a small secreted effector protein dubbed Suppressor of Host Resistance 4z (SHR4z) in the SG4z haustorium that upon transfer to the host roots causes a loss of host immunity (i.
View Article and Find Full Text PDFParasitic plants in the genus Striga, commonly known as witchweeds, cause major crop losses in sub-Saharan Africa and pose a threat to agriculture worldwide. An understanding of Striga parasite biology, which could lead to agricultural solutions, has been hampered by the lack of genome information. Here, we report the draft genome sequence of Striga asiatica with 34,577 predicted protein-coding genes, which reflects gene family contractions and expansions that are consistent with a three-phase model of parasitic plant genome evolution.
View Article and Find Full Text PDFSeparating footprints of adaptation from demography is challenging. When selection has acted on a single locus with major effect, this issue can be alleviated through signatures left by selective sweeps. However, as adaptation is often driven by small allele frequency shifts at many loci, studies focusing on single genes are able to identify only a small portion of genomic variants responsible for adaptation.
View Article and Find Full Text PDFBackground: Parasitic plants engage in a complex molecular dialog with potential host plants to identify a host and overcome host defenses to initiate development of the parasitic feeding organ, the haustorium, invade host tissues, and withdraw water and nutrients. While one of two critical signaling events in the parasitic plant life cycle (germination via stimulant chemicals) has been relatively well-studied, the signaling event that triggers haustorium formation remains elusive. Elucidation of this poorly understood molecular dialogue will shed light on plant-plant communication, parasitic plant physiology, and the evolution of parasitism in plants.
View Article and Find Full Text PDFHorizontal gene transfer (HGT), the movement and genomic integration of DNA across species boundaries, is commonly associated with bacteria and other microorganisms, but functional HGT (fHGT) is increasingly being recognized in heterotrophic parasitic plants that obtain their nutrients and water from their host plants through direct haustorial feeding. Here, in the holoparasitic stem parasite Cuscuta, we identify 108 transcribed and probably functional HGT events in Cuscuta campestris and related species, plus 42 additional regions with host-derived transposon, pseudogene and non-coding sequences. Surprisingly, 18 Cuscuta fHGTs were acquired from the same gene families by independent HGT events in Orobanchaceae parasites, and the majority are highly expressed in the haustorial feeding structures in both lineages.
View Article and Find Full Text PDF