Publications by authors named "Claude Welcker"

Elucidating the genetic components of plant genotype-by-environment interactions is of key importance in the context of increasing climatic instability, diversification of agricultural practices and pest pressure due to phytosanitary treatment limitations. The genotypic response to environmental stresses can be investigated through multi-environment trials (METs). However, genome-wide association studies (GWAS) of MET data are significantly more complex than that of single environments.

View Article and Find Full Text PDF

Transcriptomics and proteomics information collected on a platform can predict additive and non-additive effects for platform traits and additive effects for field traits. The effects of climate change in the form of drought, heat stress, and irregular seasonal changes threaten global crop production. The ability of multi-omics data, such as transcripts and proteins, to reflect a plant's response to such climatic factors can be capitalized in prediction models to maximize crop improvement.

View Article and Find Full Text PDF

Plant aquaporins are involved in numerous physiological processes, such as cellular homeostasis, tissue hydraulics, transpiration, and nutrient supply, and are key players of the response to environmental cues. While varying expression patterns of aquaporin genes have been described across organs, developmental stages, and stress conditions, the underlying regulation mechanisms remain elusive. Hence, this work aimed to shed light on the expression variability of 4 plasma membrane intrinsic protein (PIP) genes in maize (Zea mays) leaves, and its genetic causes, through expression quantitative trait locus (eQTL) mapping across a 252-hybrid diversity panel.

View Article and Find Full Text PDF

Breeding for resilience to climate change requires considering adaptive traits such as plant architecture, stomatal conductance and growth, beyond the current selection for yield. Robotized indoor phenotyping allows measuring such traits at high throughput for speed breeding, but is often considered as non-relevant for field conditions. Here, we show that maize adaptive traits can be inferred in different fields, based on genotypic values obtained indoor and on environmental conditions in each considered field.

View Article and Find Full Text PDF

Combined phenomic and genomic approaches are required to evaluate the margin of progress of breeding strategies. Here, we analyze 65 years of genetic progress in maize yield, which was similar (101 kg ha year) across most frequent environmental scenarios in the European growing area. Yield gains were linked to physiologically simple traits (plant phenology and architecture) which indirectly affected reproductive development and light interception in all studied environments, marked by significant genomic signatures of selection.

View Article and Find Full Text PDF

Improving crop water use efficiency, the amount of carbon assimilated as biomass per unit of water used by a plant, is of major importance as water for agriculture becomes scarcer. In rice, the genetic bases of transpiration efficiency, the derivation of water use efficiency at the whole-plant scale, and its putative component trait transpiration restriction under high evaporative demand remain unknown. These traits were measured in 2019 in a panel of 147 African rice (Oryza glaberrima) genotypes known to be potential sources of tolerance genes to biotic and abiotic stresses.

View Article and Find Full Text PDF
Article Synopsis
  • Crop wild relatives, like bananas, can provide valuable genetic diversity for developing drought-resistant crops, but they are not well-explored in breeding programs.
  • The study used advanced phenotyping methods to analyze how different banana genotypes respond to environmental factors like light and soil moisture, identifying various phenotypic groups and significant differences in their transpiration characteristics.
  • The findings highlight important genotype-specific traits for drought avoidance and underscore the need for conserving these wild relatives for future breeding efforts.
View Article and Find Full Text PDF

The effect of drought on maize yield is of particular concern in the context of climate change and human population growth. However, the complexity of drought-response mechanisms makes the design of new drought-tolerant varieties a difficult task that would greatly benefit from a better understanding of the genotype-phenotype relationship. To provide novel insight into this relationship, we applied a systems genetics approach integrating high-throughput phenotypic, proteomic, and genomic data acquired from 254 maize hybrids grown under two watering conditions.

View Article and Find Full Text PDF
Article Synopsis
  • The expansion of maize cultivation in temperate regions is crucial for food security, necessitating adaptations to varying temperatures and flowering times.
  • The novel florigen gene ZCN12, in conjunction with ZCN8, significantly influences flowering time in maize, supported by genetic data from 327 lines.
  • Breeders have selected specific ZCN alleles, indicating that these genes are vital for achieving the necessary flowering variations for successful maize growth in temperate climates.
View Article and Find Full Text PDF

The quality of yield prediction is linked to that of leaf area. We first analysed the consequences of flowering time and environmental conditions on the area of individual leaves in 127 genotypes presenting contrasting flowering times in fields of Europe, Mexico, and Kenya. Flowering time was the strongest determinant of leaf area.

View Article and Find Full Text PDF

Background: Single Nucleotide Polymorphism (SNP) array and re-sequencing technologies have different properties (e.g. calling rate, minor allele frequency profile) and drawbacks (e.

View Article and Find Full Text PDF

The development of germplasm adapted to changing climate is required to ensure food security. Genomic prediction is a powerful tool to evaluate many genotypes but performs poorly in contrasting environmental scenarios (genotype × environment interaction), in spite of promising results for flowering time. New avenues are opened by the development of sensor networks for environmental characterization in thousands of fields.

View Article and Find Full Text PDF

Based on case studies, we discuss the extent to which genome-wide association studies (GWAS) are affected by outlier plants, i.e. those deviating from the expected distribution on a multi-criteria basis.

View Article and Find Full Text PDF

Progress in remote sensing and robotic technologies decreases the hardware costs of phenotyping. Here, we first review cost-effective imaging devices and environmental sensors, and present a trade-off between investment and manpower costs. We then discuss the structure of costs in various real-world scenarios.

View Article and Find Full Text PDF

Breeders select for yield, thereby indirectly selecting for traits that contribute to it. We tested if breeding has affected a range of traits involved in plant architecture and light interception, via the analysis of a panel of 60 maize hybrids released from 1950 to 2015. This was based on novel traits calculated from reconstructions derived from a phenotyping platform.

View Article and Find Full Text PDF

Projections based on invariant genotypes and agronomic practices indicate that climate change will largely decrease crop yields. The comparatively few studies considering farmers' adaptation result in a diversity of impacts depending on their assumptions. We combined experiments and process-based modeling for analyzing the consequences of climate change on European maize yields if farmers made the best use of the current genetic variability of cycle duration, based on practices they currently use.

View Article and Find Full Text PDF

A genomic segment on maize chromosome 7 influences carbon isotope composition, water use efficiency, and leaf growth sensitivity to drought, possibly by affecting stomatal properties. Climate change is expected to decrease water availability in many agricultural production areas around the globe. Therefore, plants with improved ability to grow under water deficit are urgently needed.

View Article and Find Full Text PDF

Background: In maize, silks are hundreds of filaments that simultaneously emerge from the ear for collecting pollen over a period of 1-7 days, which largely determines grain number especially under water deficit. Silk growth is a major trait for drought tolerance in maize, but its phenotyping is difficult at throughputs needed for genetic analyses.

Results: We have developed a reproducible pipeline that follows ear and silk growths every day for hundreds of plants, based on an ear detection algorithm that drives a robotized camera for obtaining detailed images of ears and silks.

View Article and Find Full Text PDF

Stomatal conductance is central for the trades-off between hydraulics and photosynthesis. We aimed at deciphering its genetic control and that of its responses to evaporative demand and water deficit, a nearly impossible task with gas exchanges measurements. Whole-plant stomatal conductance was estimated via inversion of the Penman-Monteith equation from data of transpiration and plant architecture collected in a phenotyping platform.

View Article and Find Full Text PDF

Little is known about the factors driving within species Genome Size (GS) variation. GS may be shaped indirectly by natural selection on development and adaptative traits. Because GS variation is particularly pronounced in maize, we have sampled 83 maize inbred lines from three well described genetic groups adapted to contrasted climate conditions: inbreds of tropical origin, Flint inbreds grown in temperate climates, and Dent inbreds distributed in the Corn Belt.

View Article and Find Full Text PDF

Assessing the genetic variability of plant performance under heat and drought scenarios can contribute to reduce the negative effects of climate change. We propose here an approach that consisted of (1) clustering time courses of environmental variables simulated by a crop model in current (35 years × 55 sites) and future conditions into six scenarios of temperature and water deficit as experienced by maize (Zea mays L.) plants; (2) performing 29 field experiments in contrasting conditions across Europe with 244 maize hybrids; (3) assigning individual experiments to scenarios based on environmental conditions as measured in each field experiment; frequencies of temperature scenarios in our experiments corresponded to future heat scenarios (+5°C); (4) analyzing the genetic variation of plant performance for each environmental scenario.

View Article and Find Full Text PDF

The elongation of styles and stigma (silks) of maize (Zea mays) flowers is rapid (1-3 mm h(-1) ), occurs over a short period and plays a pivotal role in reproductive success in adverse environments. Silk elongation rate was measured using displacement transducers in 350 plants of eight genotypes during eight experiments with varying evaporative demand and soil water status. Measured time courses revealed that silk elongation rate closely followed changes in soil water status and evaporative demand, with day-night alternations similar to those in leaves.

View Article and Find Full Text PDF

Light interception and radiation-use efficiency (RUE) are essential components of plant performance. Their genetic dissections require novel high-throughput phenotyping methods. We have developed a suite of methods to evaluate the spatial distribution of incident light, as experienced by hundreds of plants in a glasshouse, by simulating sunbeam trajectories through glasshouse structures every day of the year; the amount of light intercepted by maize (Zea mays) plants via a functional-structural model using three-dimensional (3D) reconstructions of each plant placed in a virtual scene reproducing the canopy in the glasshouse; and RUE, as the ratio of plant biomass to intercepted light.

View Article and Find Full Text PDF

The sensitivity of expansive growth to water deficit has a large genetic variability, which is higher than that of photosynthesis. It is observed in several species, with some genotypes stopping growth in a relatively wet soil, whereas others continue growing until the lower limit of soil-available water. The responses of growth to soil water deficit and evaporative demand share an appreciable part of their genetic control through the colocation of quantitative trait loci as do the responses of the growth of different organs to water deficit.

View Article and Find Full Text PDF

Evaporative demand and soil water deficit equally contribute to water stress and to its effect on plant growth. We have compared the genetic architectures of the sensitivities of maize (Zea mays) leaf elongation rate with evaporative demand and soil water deficit. The former was measured via the response to leaf-to-air vapor pressure deficit in well-watered plants, the latter via the response to soil water potential in the absence of evaporative demand.

View Article and Find Full Text PDF