Publications by authors named "Claude Verdier"

We developed an original computational model for cell deformation and migration capable of accounting for the cell sensitivity to the environment and its appropriate adaptation. This cell model is ultimately intended to be used to address tissue morphogenesis. Hence it has been designed to comply with four requirements: (1) the cell should be able to probe and sense its environment and respond accordingly; (2) the model should be easy to parametrize to adapt to different cell types; (3) the model should be able to extend to 3D cases; (4) simulations should be fast enough to integrate many interacting cells.

View Article and Find Full Text PDF

Spheroids are multicellular systems with an interesting rheology giving rise to elasto-visco-plastic properties. They are good tumor models, but the role of the extracellular matrix (ECM) is not fully understood. ECM is an important link between cells and may have a significant impact on tissue organization.

View Article and Find Full Text PDF

Cancer cell migration is a widely studied topic but has been very often limited to two dimensional motion on various substrates. Indeed, less is known about cancer cell migration in 3D fibrous-extracellular matrix (ECM) including variations of the microenvironment. Here we used 3D time lapse imaging on a confocal microscope and a phase correlation method to follow fiber deformations, as well as cell morphology and live actin distribution during the migration of cancer cells.

View Article and Find Full Text PDF

AFM-based rheology methods enable the investigation of the viscoelastic properties of cancer cells. Such properties are known to be essential for cell functions, especially for malignant cells. Here, the relevance of the force modulation method was investigated to characterize the viscoelasticity of bladder cancer cells of various invasiveness on soft substrates, revealing that the rheology parameters are a signature of malignancy.

View Article and Find Full Text PDF

We propose a biomechanical model for the extravasation of a tumor cell (TC) through the endothelium of a blood vessel. Based on prior in vitro observations, we assume that the TC extends a protrusion between adjacent endothelial cells (ECs) that adheres to the basement membrane via focal adhesions (FAs). As the protrusion grows in size and branches out, the actomyosin contraction along the stress fibers (SFs) inside the protrusion pulls the relatively rigid nucleus through the endothelial opening.

View Article and Find Full Text PDF

Living cells embedded in a complex extra-cellular matrix migrate in a sophisticated way thanks to adhesions to matrix fibres and contractility. It is important to know what kind of forces are exerted by the cells. Here, we use reflectance confocal microscopy to locate fibres accurately and determine displacement fields.

View Article and Find Full Text PDF

Cell-cell and cell-glycocalyx interactions under flow are important for the behaviour of circulating cells in blood and lymphatic vessels. However, such interactions are not well understood due in part to a lack of tools to study them in defined environments. Here, we develop a versatile in vitro platform for the study of cell-glycocalyx interactions in well-defined physical and chemical settings under flow.

View Article and Find Full Text PDF

We study experimentally the motion of nondeformable microbeads in a linear shear flow close to a wall bearing a thin and soft polymer layer. Combining microfluidics and 3D optical tracking, we demonstrate that the steady-state bead-to-surface distance increases with the flow strength. Moreover, such lift is shown to result from flow-induced deformations of the layer, in quantitative agreement with theoretical predictions from elastohydrodynamics.

View Article and Find Full Text PDF

Cancer cells are usually found to be softer than normal cells, but their stiffness changes when they are in contact with different environments because of mechanosensitivity. For example, they adhere to a given substrate by tuning their cytoskeleton, thus affecting their rheological properties. This mechanism could become efficient when cancer cells invade the surrounding tissues, and they have to remodel their cytoskeleton in order to achieve particular deformations.

View Article and Find Full Text PDF

LINC complexes are crucial for the response of muscle cell precursors to the rigidity of their environment, but the mechanisms explaining this behaviour are not known. Here we show that pathogenic mutations in LMNA or SYNE-1 responsible for severe muscle dystrophies reduced the ability of human muscle cell precursors to adapt to substrates of different stiffness. Plated on muscle-like stiffness matrix, mutant cells exhibited contractile stress fibre accumulation, increased focal adhesions, and higher traction force than controls.

View Article and Find Full Text PDF

Adhesion of cancer cells to endothelial cells is a key step in cancer metastasis; therefore, identifying the key molecules involved during this process promises to aid in efforts to block the metastatic cascade. We have previously shown that intercellular adhesion molecule-1 (ICAM-1) expressed by endothelial cells is involved in the interactions of bladder cancer cells (BCs) with the endothelium. However, the ICAM-1 ligands have never been investigated.

View Article and Find Full Text PDF
Article Synopsis
  • Living cells exert forces on their surfaces through adhesive contacts, enabling shape changes and tension build-up in their cytoskeleton during migration.
  • Traction force microscopy (TFM) allows us to visualize these forces, but understanding the detailed mechanics of migration requires complementary rheological models that link cytoskeletal tension and myosin activity.
  • By solving a PDE using a finite-element approach, the study explores how well these models can predict traction forces in cell migration, confirming that the model's parameters can consistently explain observed force patterns based on cell geometry.
View Article and Find Full Text PDF

Hemodynamic shear stress from blood flow on the endothelium critically regulates vascular function in many physiological and pathological situations. Endothelial cells adapt to shear stress by remodeling their cytoskeletal components and subsequently by changing their shape and orientation. We demonstrate that β1 integrin activation is critically controlled during the mechanoresponse of endothelial cells to shear stress.

View Article and Find Full Text PDF

Cancer metastasis is a complex process involving cell-cell interactions mediated by cell adhesive molecules. In this study we determine the adhesion strength between an endothelial cell monolayer and tumor cells of different metastatic potentials using Atomic Force Microscopy. We show that the rupture forces of receptor-ligand bonds increase with retraction speed and range between 20 and 70 pN.

View Article and Find Full Text PDF

The migration of tumor cells of different degrees of invasivity is studied, on the basis of the traction forces exerted in time on soft substrates (Young modulus∼10 kPa). It is found that the outliers of the traction stresses can be an effective indicator to distinguish cancer cell lines of different invasiveness. Here, we test two different epithelial bladder cancer cell lines, one invasive (T24), and a less invasive one (RT112).

View Article and Find Full Text PDF

Anchorage of muscle cells to the extracellular matrix is crucial for a range of fundamental biological processes including migration, survival and differentiation. Three-dimensional (3D) culture has been proposed to provide a more physiological in vitro model of muscle growth and differentiation than routine 2D cultures. However, muscle cell adhesion and cell-matrix interplay of engineered muscle tissue remain to be determined.

View Article and Find Full Text PDF

Collagen model tissues, consisting of cells embedded in a collagen matrix at different concentrations (of cells and collagen) were analyzed. Rheological properties were measured and complementary confocal microscopy analysis carried out. An important feature, corresponding to the breakdown of the collagen network (i.

View Article and Find Full Text PDF

Cancer metastasis is a multistep process involving cell-cell interactions, but little is known about the adhesive interactions and signaling events during extravasation of tumor cells (TCs). In this study, cell adhesion molecule (CAM) expression was investigated using an in vitro assay, in which TCs were seeded onto an endothelial cell (ECs) monolayer and cocultured during 5 h. Flow cytometry, confocal microscopy as well as western blot analysis indicated that endothelial ICAM-1 (Inter Cellular Adhesion Molecule-1), VCAM-1 (Vascular Adhesion Molecule-1) and E-selectin were up-regulated after TC-EC coculture, whereas no change was observed for CAMs expression in tumor cells.

View Article and Find Full Text PDF

We present experiments involving cancer cells adhering to microchannels, subjected to increasing shear stresses (0.1-30 Pa). Morphological studies were carried out at different shear stresses.

View Article and Find Full Text PDF

In this review, we summarize the current state of understanding of the processes by which leukocytes, and other cells, such as tumor cells interact with the endothelium under various blood flow conditions. It is shown that the interactions are influenced by cell-cell adhesion properties, shear stresses due to the flow field and can also be modified by the cells microrheological properties. Different adhesion proteins are known to be involved leading to particular mechanisms by which interactions take place during inflammation or metastasis.

View Article and Find Full Text PDF

Vesicles under shear flow exhibit various dynamics: tank treading (TT), tumbling (TB), and vacillating breathing (VB). The VB mode consists in a motion where the long axis of the vesicle oscillates about the flow direction, while the shape undergoes a breathing dynamics. We extend here the original small deformation theory [C.

View Article and Find Full Text PDF

In the process of hematogenous cancer metastasis, tumor cells (TCs) must shed into the blood stream, survive in the blood circulation, migrate through the vascular endothelium (extravasation) and proliferate in the target organs. However, the precise mechanisms by which TCs penetrate the endothelial cell (EC) junctions remain one of the least understood aspects of TC extravasation. This question has generally been addressed under static conditions, despite the important role of flow induced mechanical stress on the circulating cell-endothelium interactions.

View Article and Find Full Text PDF

Cell adhesive and rheological properties play a very important role in cell transmigration through the endothelial barrier, in particular in the case of inflammation (leukocytes) or cancer metastasis (cancer cells). In order to characterize cell viscoelastic properties, we have designed a force spectrometer (AFM) which can stretch cells thereby allowing measurement of their rheological properties. This custom-made force spectrometer allows two different visualizations, one lateral and one from below.

View Article and Find Full Text PDF