Publications by authors named "Claude Millot"

Molecular dynamics simulations have been performed on liquid dibromomethane at thermodynamic states corresponding to temperature in the range 268-328 K and pressure varying from 1 bar to 3000 bar. The interaction model is a simple effective two-body pair potential with atom-atom Coulomb and Lennard-Jones interactions and molecules are rigid. Thermodynamic properties have been studied, including the isobaric thermal expansion coefficient, the isothermal compressibility, the heat capacities and the speed of sound.

View Article and Find Full Text PDF

Translational and rotational diffusion coefficients of liquid water have been computed from molecular dynamics simulation with a recent polarizable potential at 298, 400, and 550 K at very high pressure. At 298 K, the model reproduces the initial increase and the occurrence of a maximum for the translational and rotational diffusion coefficients when the pressure increases. At 400 and 550 K, translational and rotational diffusion coefficients are found to monotonically decrease when pressure increases in the gigapascal range, with the translational coefficient decreasing faster than the rotational one.

View Article and Find Full Text PDF

Dipolar, dipole-quadrupole and quadrupole-quadrupole static polarizabilities of the water molecule have been determined by ab initio calculations at coupled cluster level of theory with single, double and perturbative triple excitations CCSD(T) with an aug-cc-pVTZ basis set using a finite field and field-gradient method. The geometry dependence of polarizability tensor components has been explored and modeled by power series expansion in bond length and angle variations up to sum of powers equal to 4. The results provide a very detailed description of the static polarizability of water up to quadrupolar rank which can be used for the test and development of novel accurate polarizable interaction potentials for modeling aqueous solutions.

View Article and Find Full Text PDF

Geometry-dependent distributed polarizability models have been constructed by fits to ab initio calculations at the coupled cluster level of theory with up to noniterative triple excitations in an augmented triple-zeta quality basis set for the water molecule in the field of a point charge. The investigated models include (i) charge-flow polarizabilities between chemically bonded atoms, (ii) isotropic or anisotropic dipolar polarizabilities on oxygen atom or on all atoms, and (iii) combinations of models (i) and (ii). For each model, the polarizability parameters have been optimized to reproduce the induction energy of a water molecule polarized by a point charge successively occupying a grid of points surrounding the molecule.

View Article and Find Full Text PDF

Quantum chemical calculations are used to derive distributed polarizability models sufficiently accurate and compact to be used in classical molecular dynamics simulations of imidazolium-based room temperature ionic liquids. Two distributed polarizability models are fitted to reproduce the induction energy of three imidazolium cations (1,3-dimethyl-, 1-ethyl-3-methyl-, and 1-butyl-3-methylimidazolium) and four anions (tetrafluoroborate, hexafluorophosphate, nitrate, and thiocyanate) polarized by a point charge located successively on a grid of surrounding points. The first model includes charge-flow polarizabilities between first-neighbor atoms and isotropic dipolar polarizability on all atoms (except H), while the second model includes anisotropic dipolar polarizabilities on all atoms (except H).

View Article and Find Full Text PDF

Molecular dynamics simulations of liquid quinoline have been performed at experimental densities corresponding to the temperature range 276-320 K. The intermolecular potential is a simple effective two-body potential between rigid molecules having 17 atomic Lennard-Jones and electrostatic Coulomb interaction sites. The vaporization enthalpy is overestimated by 8-9% with respect to the experimental value.

View Article and Find Full Text PDF

The dynamic polarizability and optical absorption spectrum of liquid water in the 6-15 eV energy range are investigated by a sequential molecular dynamics (MD)/quantum mechanical approach. The MD simulations are based on a polarizable model for liquid water. Calculation of electronic properties relies on time-dependent density functional and equation-of-motion coupled-cluster theories.

View Article and Find Full Text PDF

Classical nucleation theory pictures the homogeneous nucleation of a crystal as the formation of a spherical crystalline embryo, possessing the properties of the macroscopic crystal, inside a parent supercooled liquid. In this work we study crystal nucleation in moderately supercooled sulfur hexafluoride by umbrella sampling simulations. The nucleation free energy evolves from 5.

View Article and Find Full Text PDF

A method based on a lattice summation technique for treating long-range electrostatic interactions in hybrid quantum mechanics/molecular mechanics simulations is presented in this article. The quantum subsystem is studied at the semiempirical level, whereas the solvent is described by a two-body potential of molecular mechanics. Molecular dynamics simulations of a (quantum) chloride ion in (classical) water have been performed to test this technique.

View Article and Find Full Text PDF

We report on a molecular simulation study of the homogeneous nucleation of CO2 in the supercooled liquid at low pressure (P = 5 MPa) and for degrees of supercooling ranging from 32% to 60%. In all cases, regardless of the degree of supercooling, the structure of the crystal nuclei is that of the Pa3 phase, the thermodynamically stable phase. For the more moderate degree of supercooling of 32%, the nucleation is an activated process and requires a method to sample states of high free energy.

View Article and Find Full Text PDF

We report on a computer simulation study of the early stages of the crystallization of molecular nitrogen. First, we study how homogeneous nucleation takes place in supercooled liquid N(2) for a moderate degree of supercooling. Using the umbrella sampling technique, we determine the free energy barrier of formation for a critical nucleus of N(2).

View Article and Find Full Text PDF

We report on results on the crystal nucleation and growth of nitrogen. Using molecular dynamics simulations, we show that while nucleation proceeds into the metastable alpha-phase (i.e.

View Article and Find Full Text PDF

OPEP is a suite of FORTRAN programs targeted at the optimal partitioning of molecular electric properties. It includes an interactive module for the construction of Cartesian grids of points, on which either the molecular electrostatic potential or the induction energy is mapped. The generation of distributed multipoles and polarizabilities is achieved using either the formalism of the normal equations of the least-squares problem, which restates the fitting procedure in terms of simple matrix operations, or a statistical approach, which provides a pictorial description of the distributed models of multipoles and polarizabilities, thereby allowing the pinpointing of pathological cases.

View Article and Find Full Text PDF