Publications by authors named "Claude Meunier"

Article Synopsis
  • Renshaw cells (V1) in the spinal cord are active soon after they settle next to motoneurons and show functional differences throughout their development.
  • The study used various experimental methods along with modeling to investigate the changes in V1's electrical properties during early mouse embryonic stages (E11.5-E16.5).
  • Key findings indicate that the diversity in firing patterns of embryonic V1 is influenced by the balance of sodium and potassium conductances, leading to a phase where these cells temporarily lose their ability to sustain continuous firing.
View Article and Find Full Text PDF

Spinal motoneurons may display a variety of firing patterns including bistability between repetitive firing and quiescence and, more rarely, bistability between two firing states of different frequencies. It was suggested in the past that firing bistability required that the persistent L-type calcium current be segregated in distal dendrites, far away from the spike generating currents. However, this is not supported by more recent data.

View Article and Find Full Text PDF

We explain the mechanism that elicits the mixed mode oscillations (MMOs) and the subprimary firing range that we recently discovered in mouse spinal motoneurons. In this firing regime, high-frequency subthreshold oscillations appear a few millivolts below the spike voltage threshold and precede the firing of a full blown spike. By combining intracellular recordings in vivo (including dynamic clamp experiments) in mouse spinal motoneurons and modeling, we show that the subthreshold oscillations are due to the spike currents and that MMOs appear each time the membrane is in a low excitability state.

View Article and Find Full Text PDF

Dendrites may exhibit many types of electrical and morphological heterogeneities at the scale of a few micrometers. Models of neurons, even so-called detailed models, rarely consider such heterogeneities. Small-scale fluctuations in the membrane conductances and the diameter of dendrites are generally disregarded and spines merely incorporated into the dendritic shaft.

View Article and Find Full Text PDF

Why do motoneurons possess two persistent inward currents (PICs), a fast sodium current and a slow calcium current? To answer this question, we replaced the natural PICs with dynamic clamp-imposed artificial PICs at the soma of spinal motoneurons of anesthetized cats. We investigated how PICs with different kinetics (1-100 ms) amplify proprioceptive inputs. We showed that their action depends on the presence or absence of a resonance created by the I(h) current.

View Article and Find Full Text PDF

Does the afterhyperpolarization current control the gain and discharge variability of motoneurones according to the same law? We investigated this issue in lumbar motoneurones of anaesthetized cats. Using dynamic clamp, we measured the conductance, time constant and driving force of the AHP current in a sample of motoneurones and studied how the gain was correlated to these quantities. To study the action of the AHP on the discharge variability and to compare it to its action on the gain, we injected an artificial AHP-like current in motoneurones.

View Article and Find Full Text PDF

We accurately measured the conductance responsible for the afterhyperpolarization (medium AHP) that follows a single spike in spinal motoneurons of anesthetized cats. This was done by using the dynamic-clamp method. We injected an artificial current in the neurons that increased the AHP amplitude, and we made use of the fact that the intensity of the natural AHP current at the trough of the voltage trajectory was related linearly to the AHP amplitude.

View Article and Find Full Text PDF

Electrophysiological experiments and modeling studies have shown that afterhyperpolarization regulates the discharge of lumbar motoneurons in anesthetized cats and is an important determinant of their firing properties. However, it is still unclear how firing properties depend on slow afterhyperpolarization, input conductance, and the fast currents responsible for spike generation. We study a single-compartment integrate-and-fire model with a slow potassium conductance that exponentially decays between spikes.

View Article and Find Full Text PDF

Hodgkin and Huxley (H-H) model for action potential generation has held firm for half a century because this relatively simple and experimentally testable model embodies the major features of membrane nonlinearity: namely, voltage-dependent ionic currents that activate and inactivate in time. However, experimental and theoretical developments of the past 20 years force one to re-evaluate its usefulness. First, the H-H model is, in its original form, limited to the two voltage-dependent currents found in the squid giant axon and it must be extended significantly if it is to deal with the excitable soma and dendrites of neurons.

View Article and Find Full Text PDF