Bis-phenylpropynyl-functionalized imidazolium salts and their corresponding gold and copper N-heterocyclic carbene (NHC) complexes were prepared in order to investigate their potential application for the synthesis of heterometallic coinage metal compounds. By transmetalation reactions with different precious metal sources, including copper and silver phenylacetylides [MCCPh] (M=Cu, Ag), polynuclear compounds were obtained, which were further investigated for their photoluminescence properties. Additionally, one gold NHC complex was post-functionalized by autocatalytic hydration of the alkynyl side chains.
View Article and Find Full Text PDFTo develop a selective ligand for the separation of lanthanides(III) and actinides(III) the coordination chemistry of the chelating N-donor ligand 2,6-bis(1-(p-tolyl)-1H-1,2,3-triazol-4-yl)pyridine (BTTP) was investigated. The two isostructural lanthanide compounds [Ln(BTTP)3(OTf)3] (Ln = Eu (1), Sm (2); OTf = trifluoromethanesulfonate) were synthesized and fully characterized. The solid-state structures of both compounds were established by single-crystal X-ray diffraction.
View Article and Find Full Text PDFPhenylpropynyl-functionalized imidazolium salts, as well as their gold complexes, were prepared in excellent yields affording suitable starting materials for metal cluster synthesis. The reactions of these gold complexes with coinage metal phenylacetylides [M(CCPh)](x) (M = Cu, Ag) resulted in the formation of novel heterometallic hexanuclear clusters which exhibit mixed metallophillic interactions and intense white photoluminescence at low temperature.
View Article and Find Full Text PDF