Publications by authors named "Claude F Bernasconi"

An ab initio study of two series of carbon-to-carbon proton transfer reactions is reported. The first series refers to the heterocyclic C(4)H(5)X(+)/C(4)H(4)X (X = CH(-), NH, S, O, PH, CH(2), AlH, BH) systems, and the second to the linear [Formula: see text] (X = CH(-), NH, S, PH, O, CH(2), AlH, BH) reference systems . The major objective of this study was to examine to what degree the aromaticity of C(4)H(4)X (X = CH(-), NH, S, O, PH) and the antiaromaticity of C(4)H(4)X (X = AlH, BH) is expressed at the transition state of the proton transfer and how this affects the respective intrinsic barriers.

View Article and Find Full Text PDF

Nucleophilic vinylic substitution (S(N)V), in which a leaving group such as halogen is replaced by a carbon, oxygen, nitrogen, sulfur, or other nucleophile, is an important synthetic tool. It generates compounds with a carbon- or heteroatom-substituted carbon-carbon double bond, such as vinyl ethers, enamines, a variety of heterocyclic systems, and intermediates to pharmaceutically important compounds. The S(N)V reaction has many mechanistic variants, which depend on the substituents, nucleophile, leaving group, and solvent, among other factors.

View Article and Find Full Text PDF

The reversible deprotonation of 3(2H)-furanone (3H-O) and 3(2H)-thiophenone (3H-S) by a series of delocalized carbanions and by CN(-), and the identity proton transfer of 3H-O to its conjugate base (3(-)-O) and of 3H-S to 3(-)-S have been studied at the MP2//6-31+G** level. The main objective has been to examine to what extent the aromaticity of 3(-)-O and 3(-)-S is expressed at the transition state of these reactions and how the intrinsic barriers are affected by the transition state aromaticity. Aromaticity parameters such as NICS values, HOMA and Bird Indices indicate a disproportionately high degree of aromatic stabilization of the transition state.

View Article and Find Full Text PDF

The role of negative hyperconjugation and anomeric and polar effects in stabilizing the XZHCbetaCalphaYY'- intermediates in SNV reactions was studied computationally by DFT methods. Destabilizing steric effects are also discussed. The following ions were studied: X = CH3O, CH3S, CF3CH2O and Y = Y' = Z = H (7b-7d), Y = Y' = H, Z = CH3O, CH3S, CF3CH2O (7e-7i), YY' = Meldrum's acid-like moiety (Mu), Z = H, (8b-8d), and YY' = Mu, Z = CH3O, CH3S, CF3CH2O (8e-8i).

View Article and Find Full Text PDF

An ab initio study of six carbon-to-carbon identity proton transfers is reported. They refer to the benzenium ion/benzene (C6H7(+)/C6H6), the 2,4-cyclopentadiene/cyclopentadienyl anion (C5H6/C5H5(-)), and the cyclobutenyl cation/cyclobutadiene (C4H5(+)/C4H4) systems and their respective noncyclic reference systems, that is, [structure: see text], [structure: see text] and [structure: see text]. For the aromatic C6H7(+)/C6H6 and C5H6/C5H5(-) systems, geometric parameters and aromaticity indices indicate that the transition states are highly aromatic.

View Article and Find Full Text PDF

A kinetic study of the reactions of thiolate ions with three Fischer-type [aryloxy(phenyl)carbene]pentacarbonyl chromium(0) complexes in 50% MeCN-50% water (v/v) is reported. Brønsted plots of the second-order rate constants are biphasic with an initial steep rise for weakly basic thiolate ions (beta(nuc) approximately equal to 1.0) followed by a slightly descending leg with a negative slope (beta(nuc) approximately equal to -0.

View Article and Find Full Text PDF

A kinetic study of the reversible deprotonation of methylnitroacetate (4H) by primary aliphatic amines, secondary alicyclic amines, hydroxide ion, and water in water at 25 degrees C and in 50% DMSO/50% water (v/v) at 20 degrees C is reported. Intrinsic rate constants, k0, determined by extrapolation or interpolation of Brønsted plots have been determined. In comparison to proton transfers involving other nitroalkanes, the intrinsic rate constants for 4H are exceptionally high; for example, log k0 for the reaction of 4H with secondary alicyclic amines in water (1.

View Article and Find Full Text PDF

A spectroscopic and kinetic study of the reaction of methyl beta-methylthio-alpha-nitrocinnamate (4-SMe) with morpholine, piperidine, and hydroxide ion in 50% DMSO/50% water (v/v) at 20 degrees C is reported. The reactions of 4-SMe with piperidine in a pH range from 10.12 to 11.

View Article and Find Full Text PDF

A kinetic study of the reversible deprotonation of benzofuran-3(2H)-one (3H-O) and benzothiophene-3(2H)-one (3H-S) by amines and hydroxide ion in water at 25 degrees C is reported. The respective conjugate bases, 3--O and 3--S, represent benzofuran and benzothiophene derivatives, respectively, and thus are aromatic. The main question addressed in this paper is whether this aromaticity has the effect of enhancing or lowering intrinsic barriers to proton transfer.

View Article and Find Full Text PDF

The main question addressed in this paper is whether the nucleophilic substitution of the p-nitrophenoxy group in (CO)5Cr=C(OC6H4-4-NO2)Ph (1-NO2) by a series of substituted phenoxide ions is concerted or stepwise. Rate constants, kArO, for these substitution reactions were determined in 50% MeCN-50% water (v/v) at 25 degrees C. A Brønsted plot of log kArO versus pKa(ArOH) s consistent with a stepwise mechanism.

View Article and Find Full Text PDF

Rates of the reversible deprotonation of benzo[b]-2,3-dihydrofuran-2-one (6H-O) and benzo[b]-2,3-dihydrothiophene-2-one (6H-S) by OH-, primary aliphatic amines, secondary alicyclic amines, and carboxylate ions have been determined in water at 25 degrees C. As noted earlier by Kresge and Meng, 6H-S (pKa = 8.82) is considerably more acidic than 6H-O (pKa = 11.

View Article and Find Full Text PDF

The rates of hydrolysis of alpha-R-alpha-(methylthio)methylene Meldrum's acids (8-R with R = H, Me, Et, s-Bu, and t-Bu) were determined in basic and acidic solution in 50% DMSO-50% water (v/v) at 20 degrees C. In basic solution (KOH), nucleophilic attack to form a tetrahedral intermediate (T(OH)-) is rate limiting for all substrates (k1(OH)). In acidic solution (HCl) and at intermediate pH values (acetate buffers), water attack (k1(H2O) is rate limiting for 8-Me, 8-Et, and 8-s-Bu; the same is presumably the case for 8-t-Bu, but rates were too slow for accurate measurements at low pH.

View Article and Find Full Text PDF

[reaction: see text] Acidity constants and rates of reversible deprotonation of acetonyltriphenylphosphonium ion (1H+), phenacyltriphenylphosphonium ion (2H+), N-methyl-4-phenacylpyridinium ion (3H+), and N-methyl-4-(phenylsulfonylmethyl)pyridinium ion (4H+) by amines in water, 50% DMSO-50% water (v/v), and 90% DMSO-10% water (v/v) have been determined. From the respective Brønsted plots, log k(o) values for the intrinsic rate constants of the various proton transfers were obtained. Solvent transfer activity coefficients of the carbon acids and their respective conjugate bases were also determined which helped in understanding how the pKa values and intrinsic rate constants depend on the solvent.

View Article and Find Full Text PDF

The replacement of the methylthio group of substituted methylthiobenzylidene Meldrum's acids (2-SMe-Z) by secondary alicyclic amines occurs by a three-step mechanism. The first step is a nucleophilic attachment of the amine to 2-SMe-Z to form a zwitterionic intermediate T(+/-)(A); the second step involves deprotonation of T(+/-)(A) to form T(-)(A); while the third step represents general acid-catalyzed conversion of T(-)(A) to products. At high amine and/or high KOH concentration nucleophilic attachment is rate limiting.

View Article and Find Full Text PDF

There is much debate whether the fatty acid substrate of lipoxygenase binds "carboxylate-end first" or "methyl-end first" in the active site of soybean lipoxygenase-1 (sLO-1). To address this issue, we investigated the sLO-1 mutants Trp500Leu, Trp500Phe, Lys260Leu, and Arg707Leu with steady-state and stopped-flow kinetics. Our data indicate that the substrates (linoleic acid (LA), arachidonic acid (AA)), and the products (13-(S)-hydroperoxy-9,11-(Z,E)-octadecadienoic acid (HPOD) and 15-(S)-hydroperoxyeicosatetraeonic acid (15-(S)-HPETE)) interact with the aromatic residue Trp500 (possibly pi-pi interaction) and with the positively charged amino acid residue Arg707 (charge-charge interaction).

View Article and Find Full Text PDF

The deprotonation of pentacarbonyl[(3-diethylamino-2,4-dimethyl)cyclobut-2-ene-1-ylidene]chromium (1d) and pentacarbonyl[(3-diethylamino-4-methyl-2-phenyl)cyclobut-2-ene-1-ylidene]chromium (1e) leads to antiaromatic conjugate anions by virtue of their being cyclobutadiene derivatives. Rate constants for the deprotonation of 1d and 1e by P2-Et and pKa values were determined in acetonitrile. Gas-phase B3LYP calculations of 1d, 1e, and their respective conjugate anions, using a generalized basis set, were also performed.

View Article and Find Full Text PDF

A kinetic study of the reversible deprotonation of the rhenium carbene complexes 1H(+)(O), 1H(+)(S) and 2H(+)(O) by carboxylate ions, primary aliphatic and secondary alicyclic amines, water and OH(-) in 50% MeCN-50% water (v/v) at 25 degrees C is reported. These carbene complexes are of special interest because in their deprotonated form they represent derivatives of the aromatic heterocycles furan, thiophene and benzofuran. Intrinsic rate constants (k(o) for Delta G degrees = 0) determined from appropriate Brønsted plots for these rhenium carbene complexes and for the corresponding selenophene (1H(+)(Se)) and benzothiophene (2H(+)(S)) derivatives investigated earlier follow the orders furan < selenophene < thiophene and benzofuran less, similar benzothiophene.

View Article and Find Full Text PDF

We report an ab initio study of the identity carbon-to-carbon proton-transfer NCCH(2)Y + NCCH=Y(-) right arrow over left arrow NCCH=Y(-) + NCCH(2)Y in the gas phase, where Y = H, CH=CH(2), CH=O, CH=S, CN, NO, and NO(2). The main focus is on a comparison with the previously reported systems CH(3)Y + CH(2)=Y(-) right arrow over left arrow CH(2)=Y(-) + CH(3)Y, i.e.

View Article and Find Full Text PDF

Herein, we report on the role of the allosteric site in the activation mechanism of soybean lipoxygenase-1 utilizing stopped-flow inhibition kinetic studies. The K(D) for the activation was determined to be 25.9 +/- 2.

View Article and Find Full Text PDF

Acidity constants of six substituted 1-benzyl-1-methoxy-2-nitroethylenes (2-Z with Z = m-NO(2), m-CF(3), m-Cl, H, p-Me, p-MeO) and their respective nitronic acids were determined in 50% DMSO-50% water (v/v) at 20 degrees C. Kinetic data were obtained on the reversible deprotonation of all six 2-Z by OH(-) and piperidine and on the reversible deprotonation of 2-NO(2)() by piperazine, 1-(2-hydroxyethyl)piperazine, and morpholine in the same solvent. These data allowed a determination of the Brønsted coefficients alpha (dependence on acidity of 2-Z) and beta (dependence on amine basicity).

View Article and Find Full Text PDF

A kinetic study of the reversible deprotonation of substituted (methylthiophenylcarbene)pentacarbonyltungsten(0) ((CO)(5)W=C(SC(6)H(4)Z)CH(3)) and of substituted (benzoxymethylcarbene)pentacarbonyltungsten(0) ((CO)(5)W=C(OCH(2)C(6)H(4)Z)CH(3)) by primary aliphatic and secondary alicyclic amines in 50% MeCN-50% water (v/v) at 25 degrees C is reported. From the dependence of the deprotonation rate constants on amine basicity and on carbene complex acidity (variation of Z), Brønsted beta(B) and alpha(CH) values, respectively, were obtained. The alpha(CH) values were found to be smaller than the beta(B) values.

View Article and Find Full Text PDF

A kinetic study of the reversible deprotonation of phenyl-substituted (benzylmethoxycarbene)pentacarbonylchromium(0) complexes by OH(-) and by a series of primary aliphatic and a series of secondary alicyclic amines in 50% MeCN-50% water (v/v) at 25 degrees C is reported. Brønsted alpha(CH) values (dependence on carbene complex acidity) and beta(B) values (dependence on amine basicity) were determined. According to current notions about proton transfers involving carbon acids activated by pi-acceptors, alpha(CH) was expected to substantially exceed beta(B), the result of transition-state imbalances that are characteristic of such reactions.

View Article and Find Full Text PDF

A kinetic study of the acid-catalyzed loss of alkoxide and thiolate ions from alkoxide and thiolate ion adducts, respectively, of benzylidene Meldrum's acid (1-H), methoxybenzylidene Meldrum's acid (1-OMe), and thiomethoxybenzylidene Meldrum's acid (1-SMe) is reported. The reactions appear to be subject to general acid catalysis, although the catalytic effect of buffers is weak and the bulk of the reported data refers to H(+)-catalysis. alpha-Carbon protonation and, in some cases, protonation of one of the carbonyl oxygens to form an enol compete with alkoxide or thiolate ion expulsion.

View Article and Find Full Text PDF

A kinetic study of the reaction of beta-methoxy-alpha-nitrostilbene (1-OMe) with cyanamide (CNA) over a pH range from 8.5 to 12.4 shows that it is the anion (CNA(-), pK(a) = 11.

View Article and Find Full Text PDF

A kinetic study of the reaction of benzylidene Meldrum's acid, PhCH=C(COO)(2)C(CH(3))(2) (5-H), with a series of thiolate and alkoxide ions in 50% DMSO-50% water (v/v) at 20 degrees C is reported. The reactions with RX(-) (X = S or O) lead to adducts of the type PhCH(XR)C(COO)(2)C(CH(3))(2)(-) ((5-H,XR)(-)()), which can be viewed as a model for the intermediate of a nucleophilic vinylic substitution on substrates such as PhC(LG)=C(COO)(2)C(CH(3))(2) (LG = leaving group). Our measurements allowed a determination of rate and equilibrium constants for these processes with RS(-) = n-BuS(-), HOCH(2)CH(2)S(-), MeO(2)CCH(2)CH(2)S(-), and MeO(2)CCH(2)S(-) and RO(-) = OH(-), MeO(-) (only rate constant of breakdown of adduct), HC&tbd1;CCH(2)O(-), and CF(3)CH(2)O(-).

View Article and Find Full Text PDF