The electronic structure of Eu compounds results from a complex combination of strongly correlated electrons and relativistic effects as well as weak ligand-field interaction. There is tremendous interest in calculating the electronic structure as nowadays the Eu ion is becoming more and more crucial, for instance, in lighting technologies. Recently, interest in semiempirical methods to qualitatively evaluate the electronic structure and to model the optical spectra has gained popularity, although the theoretical methods strongly rely upon empirical inputs, hindering their prediction capabilities.
View Article and Find Full Text PDFThe ligand field density functional theory (LFDFT) algorithm is extended to treat the electronic structure and properties of systems with three-open-shell electron configurations, exemplified in this work by the calculation of the core and semi-core 1s, 2s, and 3s one-electron excitations in compounds containing transition metal ions. The work presents a model to non-empirically resolve the multiplet energy levels arising from the three-open-shell systems of non-equivalent ns, 3d, and 4p electrons and to calculate the oscillator strengths corresponding to the electric-dipole 3d → ns 3d 4p transitions, with n = 1, 2, 3 and m = 0, 1, 2, …, 10 involved in the s electron excitation process. Using the concept of ligand field, the Slater-Condon integrals, the spin-orbit coupling constants, and the parameters of the ligand field potential are determined from density functional theory (DFT).
View Article and Find Full Text PDFMethodological advents for the calculation of the multiplet energy levels arising from multiple-open-shell 2p3d electron configurations, with n = 0, 1, 2,… and 9, are presented. We use the Ligand-Field Density Functional Theory (LFDFT) program, which has been recently implemented in the Amsterdam Density Functional (ADF) program package. The methodology consists of calculating the electronic structure of a central metal ion together with its ligand coordination by means of the Density Functional Theory code.
View Article and Find Full Text PDFLigand field density functional theory (LFDFT) calculations have been used to model the uranium M4,5, N4,5 and O4,5-edge X-ray absorption near edge structure (XANES) in UO2, characterized by the promotion of one electron from the core and the semi-core 3d, 4d and 5d orbitals of U(4+) to the valence 5f. The model describes the procedure to resolve non-empirically the multiplet energy levels originating from the two-open-shell system with d and f electrons and to calculate the oscillator strengths corresponding to the dipole allowed d(10)f(2)→ d(9)f(3) transitions appropriate to represent the d electron excitation process. In the first step, the energy and UO2 unit-cell volume corresponding to the minimum structures are determined using the Hubbard model (DFT+U) approach.
View Article and Find Full Text PDFThe Yb(2+)-doped perovskite derivatives CsMX3 (M = Ca and Sr; X = Cl, Br, and I) are ideal systems for obtaining a detailed insight into the structure-luminescence relationship of divalent lanthanides. The investigation of the respective photoluminescence properties yielded two emission bands in the violet and blue spectral range for all compounds, which are assigned to the spin-allowed and spin-forbidden 5d-4f transitions, respectively. The impact on their energetic positions is dependent on both the covalency of the Yb(2+)-halide bond and the corresponding bond length in agreement with expectations.
View Article and Find Full Text PDFHere we report a theoretical analysis of the luminescence properties of Sr2Si5N8 host lattices codoped with Ca(2+) and Eu(2+). These systems have been first synthesized by Li et al. [J.
View Article and Find Full Text PDFThe most efficient way to provide domestic lighting nowadays is by light-emitting diodes (LEDs) technology combined with phosphors shifting the blue and UV emission toward a desirable sunlight spectrum. A route in the quest for warm-white light goes toward the discovery and tuning of the lanthanide-based phosphors, a difficult task, in experimental and technical respects. A proper theoretical approach, which is also complicated at the conceptual level and in computing efforts, is however a profitable complement, offering valuable structure-property rationale as a guideline in the search of the best materials.
View Article and Find Full Text PDFWe present a theoretical work detailing the electronic structure and the optical properties of (PrF8)(5-) embedded in LiYF4, complementing the insight with data that are not available by experimental line. The local distortions due to the embedding of the lanthanide ion in the sites occupied in the periodic lattice by smaller yttrium centres, not detectable in regular X-ray analyses, are reproduced with the help of geometry optimization. Then, based on the local coordination environment, the relation structure-optical properties is constructed by Density Functional Theory computations in conjunction with the ligand field theory analyses (LFDFT) determining the [Xe]4f(2)→ [Xe]4f(1)5d(1) transitions.
View Article and Find Full Text PDFIn this work we have analyzed in detail the magnetic anisotropy in a series of hydrotris(pyrazolyl)borate (Tp(-)) metal complexes, namely [VTpCl](+), [CrTpCl](+), [MnTpCl](+), [FeTpCl], [CoTpCl], and [NiTpCl], and their substituted methyl and tert-butyl analogues with the goal of observing the effect of the ligand field on the magnetic properties. In the [VTpCl](+), [CrTpCl](+), [CoTpCl], and [NiTpCl] complexes, the magnetic anisotropy arises as a consequence of out-of-state spin-orbit coupling, and covalent changes induced by the substitution of hydrogen atoms on the pyrazolyl rings does not lead to drastic changes in the magnetic anisotropy. On the other hand, much larger magnetic anisotropies were predicted in complexes displaying a degenerate ground state, namely [MnTpCl](+) and [FeTpCl], due to in-state spin-orbit coupling.
View Article and Find Full Text PDFDespite the important growth of ab initio and computational techniques, ligand field theory in molecular science or crystal field theory in condensed matter offers the most intuitive way to calculate multiplet energy levels arising from systems with open shells d and/or f electrons. Over the past decade we have developed a ligand field treatment of inorganic molecular modelling taking advantage of the dominant localization of the frontier orbitals within the metal-sphere. This feature, which is observed in any inorganic coordination compound, especially if treated by Density Functional Theory calculation, allows the determination of the electronic structure and properties with a surprising good accuracy.
View Article and Find Full Text PDFWe deal with the computational determination of the electronic structure and properties of lanthanide ions in complexes and extended structures having open-shell f and d configurations. Particularly, we present conceptual and methodological issues based on Density Functional Theory (DFT) enabling the reliable calculation and description of the f → d transitions in lanthanide doped phosphors. We consider here the optical properties of the Pr(3+) ion embedded into various solid state fluoride host lattices, for the prospection and understanding of the so-called quantum cutting process, being important in the further quest of warm-white light source in light emitting diodes (LED).
View Article and Find Full Text PDFPhys Chem Chem Phys
June 2014
We discuss the applicability of the Angular Overlap Model (AOM) to evaluate the electronic structure of lanthanide compounds, which are currently the subject of incredible interest in the field of luminescent materials. The functioning of phosphors is well established by the f-d transitions, which requires the investigation of both the ground 4f(n) and excited 4f(n-1)5d(1) electron configurations of the lanthanides. The computational approach to the problem is based on the effective Hamiltonian adjusted from ligand field theory, but not restricted to it.
View Article and Find Full Text PDFConsidering the DySc2N@C80 system as a prototype for Single Ion Magnets (SIMs) based on endohedral fullerenes, we present methodological advances and state-of-the art computations analysing the electronic structure and its relationship with the magnetic properties due to the Dy(III) ion. The results of the quantum chemical calculations are quantitatively decrypted in the framework of ligand field (LF) theory, extracting the full parametric sets and interpreting in heuristic key the outcome. An important result is the characterization of the magnetic anisotropy in the ground and excited states, drawing the polar maps of the state-specific magnetization functions that offer a clear visual image of the easy axes and account for the pattern of response to perturbations by the magnetic field applied from different space directions.
View Article and Find Full Text PDFHerein we present a Ligand Field Density Functional Theory (LFDFT) based methodology for the analysis of the 4f(n)→ 4f(n-1)5d(1) transitions in rare earth compounds and apply it for the characterization of the 4f(2)→ 4f(1)5d(1) transitions in the quantum cutter Cs2KYF6:Pr(3+) with the elpasolite structure type. The methodological advances are relevant for the analysis and prospection of materials acting as phosphors in light-emitting diodes. The positions of the zero-phonon energy corresponding to the states of the electron configurations 4f(2) and 4f(1)5d(1) are calculated, where the praseodymium ion may occupy either the Cs(+)-, K(+)- or the Y(3+)-site, and are compared with available experimental data.
View Article and Find Full Text PDFThis paper investigates the Jahn-Teller effect in the icosahedral cation B(80)(+) and compares the descent in symmetry with that in C(60)(+). For both cations the icosahedral ground state is a (2)H(u) state, which exhibits a H ⊗ (g ⊕ 2h) Jahn-Teller instability. A detailed construction of the potential energy surface of B(80)(+) using different DFT methods including B3LYP/6-31G(d), VWN/6-31G(d), PBE/TZP and PBE/6-31G(d) shows that, contrary to C(60)(+), which prefers D(5d) symmetry, the ground state of B(80)(+) adopts S(6) point group symmetry.
View Article and Find Full Text PDFA general model for the analysis of the Adiabatic Potential Energy Surfaces (APES) of the molecules that are subject to the multimode Jahn-Teller effect is presented. The method utilizes the information obtained by DFT calculations on a distorted stationary point on the APES. The essence of the model is to express the distortion along a model minimal energy path called Intrinsic Distortion Path (IDP), projecting the geometry of the system on the normal modes of the either high-symmetry (HS) or low symmetry (LS) nuclear configuration.
View Article and Find Full Text PDFThe family of the Jahn-Teller (JT) active hydrocarbon rings, C(n)H(n) (n = 5-7), was analyzed by the means of multideterminantal density functional theory (DFT) approach. The multimode problem was addressed using the intrinsic distortion path (IDP) method, in which the JT distortion is expressed as a linear combination of all totally symmetric normal modes in the low symmetry minimum energy conformation. Partitioning of the stabilization energy into the various physically meaningful terms arising from Kohn-Sham DFT has been performed to get further chemical insight into the coupling of the nuclear movements and the electron distribution.
View Article and Find Full Text PDFThe Jahn-Teller (JT) theorem states that in a molecule with a degenerate electronic state, a structural distortion must occur that lowers the symmetry, removes the degeneracy and lowers the energy. The multideterminental-DFT method performed to calculate the JT parameters for JT active molecules is described. Within the harmonic approximation the JT distortion can be analyzed as a linear combination of all totally symmetric normal modes in any of the low symmetry minimum energy conformation, which allows the intrinsic distortion path (IDP) to be calculated, exactly from the high symmetry point to the low symmetry configuration.
View Article and Find Full Text PDFWe show that values of the magnetic anisotropy energy (MAE), which are about two orders of magnitude larger than the usual ones for transition metal cations in insulators (approximately 0.01-1 cm(-1)), can be found for the less common ion Fe+. In SrCl2:Fe+, the MAE is 93 cm(-1) when calculated using second-order perturbation multi-configurational calculations (CASPT2) while a similar value is found using multi-reference density functional theory (MR-DFT).
View Article and Find Full Text PDFA set of supramolecular cage-structures--spherophanes--was studied at the density functional B3LYP level. Full geometrical structure optimisations were made with 6-31G and 6-31G(d) basis sets followed by frequency calculations, and electronic energies were evaluated at B3LYP/6-31++G(d,p). Three different symmetries were considered: C1, Ci, and Oh.
View Article and Find Full Text PDFMagnetic anisotropy in cyanide-bridged single-molecule magnets (SMMs) with Fe(III)-CN-M(II) (M = Cu, Ni) exchange-coupled pairs was analyzed using a density functional theory (DFT)-based ligand field model. A pronounced magnetic anisotropy due to exchange was found for linear Fe(III)-CN-M(II) units with fourfold symmetry. This results from spin-orbit coupling of the [Fe(III)(CN)6](3-) unit and was found to be enhanced by a tetragonal field, leading to a (2)E g ground state for Fe(III).
View Article and Find Full Text PDFThe structure and nature of the metal-metal bonding interaction in the cationic complexes [(eta6-C6Me6)2Ru2(mu2-H)3]+ (1), [(eta6-C6Me6)2Ru2(mu2-H)2(mu2-1,4-SC6H4Br)]+ (2), [(eta6-C6Me6)2Ru2(mu2-H)(mu2-1,4-SC6H4Br)2]+ (3), and [(eta6-C6Me6)2Ru2(mu2-1,4-SC6H4Br)3]+ (4) have been studied at the density functional theory (DFT) level using molecular orbital (MO) theory, bond order (BO) analysis, bond decomposition energy (BDE), electron localization function (ELF), and Laplacian of the density methods. The results show that there is no direct bond between the two ruthenium atoms in 1-4, the MO interaction within the diruthenium backbone being stabilized by the bridging ligands. For complex 1, the ELF clearly shows that the bond within the diruthenium backbone is through the three bridging hydride ligands, which act as a sort of glue by forming three-center two-electron bonds characterized by (Ru, H, Ru) basins with 1.
View Article and Find Full Text PDFThe topology of the ground-state potential energy surface of M(CN)(6) with orbitally degenerate (2)T(2g) (M = Ti(III) (t(2g)(1)), Fe(III) and Mn(II) (both low-spin t(2g)(5))) and (3)T(1g) ground states (M = V(III) (t(2g)(2)), Mn(III) and Cr(II) (both low-spin t(2g)(4))) has been studied with linear and quadratic Jahn-Teller coupling models in the five-dimensional space of the epsilon(g) and tau(2g) octahedral vibrations (Tg[symbol: see text](epsilon(g)+tau(2g)) Jahn-Teller coupling problem (T(g) = (2)T(2g), (3)T(1g))). A procedure is proposed to give access to all vibronic coupling parameters from geometry optimization with density functional theory (DFT) and the energies of a restricted number of Slater determinants, derived from electron replacements within the t(2g)(1,5) or t(2g)(2,4) ground-state electronic configurations. The results show that coupling to the tau(2g) bending mode is dominant and leads to a stabilization of D(3d) structures (absolute minima on the ground-state potential energy surface) for all complexes considered, except for [Ti(CN)(6)](3-), where the minimum is of D(4h) symmetry.
View Article and Find Full Text PDFGround- and excited-state magnetic properties of recently characterized pi-conjugated photomagnetic organic molecules are analyzed by the means of density functional theory (DFT). The systems under investigation are made up of an anthracene (An) unit primarily acting as a photosensitizer (P), one or two iminonitroxyl (IN) or oxoverdazyl (OV) stable organic radical(s) as the dangling spin carrier(s) (SC), and intervening phenylene connector(s) (B). The magnetic behavior of these multicomponent systems, represented here by the Heisenberg-Dirac magnetic exchange coupling (J), as well as the EPR observables (g tensors and isotropic A values), are accurately modeled and rationalized by using our DFT approach.
View Article and Find Full Text PDFExchange coupling across the cyanide bridge in a series of novel cyanometalate complexes with CuII-NC-MIII (M = Cr and low-spin Mn, Fe) fragments has been studied using the broken-symmetry DFT approach and an empirical model, which allows us to relate the exchange coupling constant with sigma-, pi-, and pi*-type spin densities of the CN- bridging ligand. Ferromagnetic exchange is found to be dominated by pi-delocalization via the CN- pi pathway, whereas spin polarization with participation of sigma orbitals (in examples, where the dz2 orbital of MIII is empty) and pi* orbitals of CN- yields negative spin occupations in these orbitals, and reduces the CuII-MIII exchange coupling constant. When the dz2 orbital of MIII is singly occupied, an additional positive spin density appears in the sigma(CN) orbital and leads to an increase of the ferromagnetic Cu-NC-M exchange constant.
View Article and Find Full Text PDF