Publications by authors named "Claude Collet"

The current risk assessment framework for insecticides suffers from certain shortcomings in adequately addressing the effects of low doses on off-target species. To remedy this gap, a combination of behavioural assays and in vitro cellular approaches are required to refine the precision of toxicity assessment. The domestic honey bee has long been standing as an emblematic pollinator in ecotoxicology, and once more, it provides us with a practical testing model for this purpose.

View Article and Find Full Text PDF

In honey bees, circulation of blood (hemolymph) is driven by the peristaltic contraction of the heart vessel located in the dorsal part of the abdomen. Chlorantraniliprole (CHL) is an insecticide of the anthranilic diamide class which main mode of action is to alter the function of intracellular Ca release channels (known as RyRs, for ryanodine receptors). In the honey bee, it was recently found to be more toxic when applied on the dorsal part of the abdomen, suggesting a direct cardiotoxicity.

View Article and Find Full Text PDF

DSC1, a Drosophila channel with sequence similarity to the voltage-gated sodium channel (NaV), was identified over 20 years ago. This channel was suspected to function as a non-specific cation channel with the ability to facilitate the permeation of calcium ions (Ca2+). A honeybee channel homologous to DSC1 was recently cloned and shown to exhibit strict selectivity for Ca2+, while excluding sodium ions (Na+), thus defining a new family of Ca2+ channels, known as CaV4.

View Article and Find Full Text PDF
Article Synopsis
  • The recent cloning of RDL subunits from the pea aphid has increased the number of insect GABA receptors available for research, allowing for better understanding of how different insects respond to insecticides.
  • By comparing the pharmacological sensitivity of these receptors from different insect species using advanced methods, researchers can analyze how specific insecticides affect them.
  • This study shows that while there are general similarities in receptor profiles across species, there are also important differences that can help identify insecticides that are harmful to beneficial insects like honeybees.
View Article and Find Full Text PDF

Calcium sparks are involved in major physiological and pathological processes in vertebrate muscles but have never been characterized in invertebrates. Here, dynamic confocal imaging on intact skeletal muscle cells isolated enzymatically from the adult honey bee legs allowed the first spatio-temporal characterization of subcellular calcium release events (CREs) in an insect species. The frequency of CREs, measured in x-y time lapse series, was higher than frequencies usually described in vertebrates.

View Article and Find Full Text PDF

Calcium is an important intracellular second messenger involved in several processes such as the transduction of odour signals and neuronal excitability. Despite this critical role, relatively little information is available with respect to the impact of insecticides on the dynamics of intracellular calcium homeostasis in olfactory neurons. For the first time here, physiological stimuli (depolarizing current or pheromone) were shown to elicit calcium transients in peripheral neurons from the honey bee antenna.

View Article and Find Full Text PDF

Background And Purpose: Despite a growing awareness, annual losses of honeybee colonies worldwide continue to reach threatening levels for food safety and global biodiversity. Among the biotic and abiotic stresses probably responsible for these losses, pesticides, including those targeting ionotropic GABA receptors, are one of the major drivers. Most insect genomes include the ionotropic GABA receptor subunit gene, Rdl, and two GABA-like receptor subunit genes, Lcch3 and Grd.

View Article and Find Full Text PDF

Very recently, the diamide insecticide chlorantraniliprole was shown to induce Ca2+-release from sarcoplasmic reticulum (SR) vesicles isolated from mammalian skeletal muscle through the activation of the SR Ca2+ channel ryanodine receptor. As this result raises severe concerns about the safety of this chemical, we aimed to learn more about its action. To this end, single-channel analysis was performed, which showed that chlorantraniliprole induced high-activity bursts of channel opening that accounts for the Ca2+-releasing action described before.

View Article and Find Full Text PDF

Diamides belong to one of the newest insecticides class. We characterized cellular effects of the first commercialized diamide, chlorantraniliprole (ChlorAnt). ChlorAnt not only induces a dose-dependent calcium release from internal stores of honey bee muscle cells, but also a dose-dependent blockade of the voltage-gated calcium current involved in muscles and brain excitability.

View Article and Find Full Text PDF

Recent experimental and in-field evidence of the deleterious effects of insecticides on the domestic honey bee Apis mellifera have led to a tightening of the risk assessment requirements of these products, and now more attention is being paid to their sublethal effects on other bee species. In addition to traditional tests, in vitro and in silico approaches may become essential tools for a comprehensive understanding of the impact of insecticides on bee species. Here we present a study in which electrophysiology and a Markovian multi-state modelling of the voltage-gated sodium channel were used to measure the susceptibility of the antennal lobe neurons from Apis mellifera and Bombus terrestris, to the pyrethroids tetramethrin and esfenvalerate.

View Article and Find Full Text PDF

In insects, γ-aminobutyric acid (GABA) is the major inhibitory neurotransmitter, and GABA-gated ion channels are the target of different classes of insecticides, including fipronil. We report here the cloning of six subunits (four RDL, one LCCH3, and one GRD) that constitute the repertoire of the GABA-gated ion channel family of the mite (), a honey bee ectoparasite. We also isolated a truncated GRD subunit with a premature stop codon.

View Article and Find Full Text PDF

Metaflumizone is the latest addition to the armamentarium of the Na channel inhibitor insecticide family. We used the Xenopus oocyte expression system and a Markovian model to assess the effect of metaflumizone on Apis mellifera Na channels (AmNa 1). Our results reveal that metaflumizone inhibits AmNa 1 channels by targeting the kinetics of recovery from slow inactivation.

View Article and Find Full Text PDF

In a rapidly changing environment, honeybee colonies are increasingly exposed to diverse sources of stress (e.g., new parasites, pesticides, climate warming), which represent a challenge to individual and social homeostasis.

View Article and Find Full Text PDF

Bilaterian voltage-gated Na(+) channels (NaV) evolved from voltage-gated Ca(2+) channels (CaV). The Drosophila melanogaster Na(+) channel 1 (DSC1), which features a D-E-E-A selectivity filter sequence that is intermediate between CaV and NaV channels, is evidence of this evolution. Phylogenetic analysis has classified DSC1 as a Ca(2+)-permeable Na(+) channel belonging to the NaV2 family because of its sequence similarity with NaV channels.

View Article and Find Full Text PDF

The toxicity of pesticides used in agriculture towards non-targeted organisms and especially pollinators has recently drawn the attention from a broad scientific community. Increased honeybee mortality observed worldwide certainly contributes to this interest. The potential role of several neurotoxic insecticides in triggering or potentiating honeybee mortality was considered, in particular phenylpyrazoles and neonicotinoids, given that they are widely used and highly toxic for insects.

View Article and Find Full Text PDF

Pollination is important for both agriculture and biodiversity. For a significant number of plants, this process is highly, and sometimes exclusively, dependent on the pollination activity of honeybees. The large numbers of honeybee colony losses reported in recent years have been attributed to colony collapse disorder.

View Article and Find Full Text PDF

Voltage-gated Ca(2+) channels allow the influx of Ca(2+) ions from the extracellular space upon membrane depolarization and thus serve as a transducer between membrane potential and cellular events initiated by Ca(2+) transients. Most insects are predicted to possess three genes encoding Cavα, the main subunit of Ca(2+) channels, and several genes encoding the two auxiliary subunits, Cavβ and Cavα2δ; however very few of these genes have been cloned so far. Here, we cloned three full-length cDNAs encoding the three Cavα subunits (AmelCav1a, AmelCav2a and AmelCav3a), a cDNA encoding a novel variant of the Cavβ subunit (AmelCavβc), and three full-length cDNAs encoding three Cavα2δ subunits (AmelCavα2δ1 to 3) of the honeybee Apis mellifera.

View Article and Find Full Text PDF

The sensitivity of neurons from the honey bee olfactory system to pyrethroid insecticides was studied using the patch-clamp technique on central 'antennal lobe neurons' (ALNs) in cell culture. In these neurons, the voltage-dependent sodium currents are characterized by negative potential for activation, fast kinetics of activation and inactivation, and the presence of cumulative inactivation during train of depolarizations. Perfusion of pyrethroids on these ALN neurons submitted to repetitive stimulations induced (1) an acceleration of cumulative inactivation, and (2) a marked slowing of the tail current recorded upon repolarization.

View Article and Find Full Text PDF

Control of membrane voltage and membrane current measurements are of critical importance for the study of numerous aspects of skeletal muscle physiology and pathophysiology. The silicone-clamp technique makes use of a conventional patch-clamp apparatus to achieve whole-cell voltage clamp of a restricted portion of a fully differentiated adult skeletal muscle fiber. The major part of an isolated muscle fiber is insulated from the extracellular medium with silicone grease and the tip of a single microelectrode connected to the amplifier is then inserted within the fiber through the silicone layer.

View Article and Find Full Text PDF

The honeybee is a model system to study learning and memory, and Ca(2+) signals play a key role in these processes. We have cloned, expressed, and characterized the first honeybee Ca(2+) channel subunit. We identified two splice variants of the Apis CaVβ Ca(2+) channel subunit (Am-CaVβ) and demonstrated expression in muscle and neurons.

View Article and Find Full Text PDF

We studied the mode of action of type I pyrethroids on the voltage-dependent sodium current from honeybee olfactory receptor neurons (ORNs), whose proper function in antenna is crucial for interindividual communication in this species. Under voltage-clamp, tetramethrin and permethrin induce a long lasting TTX-sensitive tail current upon repolarization, which is the hallmark of an abnormal prolongation of the open channel configuration. Permethrin and tetramethrin also slow down the sodium current fast inactivation.

View Article and Find Full Text PDF

Excitation-contraction coupling was characterized in enzymatically isolated adult honeybee skeletal muscle fibers. The voltage-dependent Ca(2+) current (I(Ca)) underlies action potential (AP) depolarization phase in honeybee muscle. A single AP leads to rapid and transient cytoplasmic Ca(2+) increase ("Ca(2+) transient"), which afterwards returns toward baseline following an exponential time course.

View Article and Find Full Text PDF

Control of membrane voltage and membrane current measurements are of strong interest for the study of numerous aspects of skeletal muscle physiology and pathophysiology. The silicone-clamp technique makes use of a conventional patch-clamp apparatus to achieve whole-cell voltage clamp of a restricted portion of a fully differentiated adult skeletal muscle fiber. The major part of an isolated muscle fiber is insulated from the extracellular medium with silicone grease, and the tip of a single microelectrode connected to the amplifier is then inserted within the fiber through the silicone layer.

View Article and Find Full Text PDF

Ca2+ sparks are localized intracellular Ca2+ release events from the sarcoplasmic reticulum in muscle cells that result from synchronized opening of ryanodine receptors (RyR). In mammalian skeletal muscle, RyR1 is the predominant isoform present in adult skeletal fibers, while some RyR3 is expressed during development. Functional studies have revealed a differential role for RyR1 and RyR3 in the overall Ca2+ signaling in skeletal muscle, but the contribution of these two isoforms to Ca2+ sparks in adult mammalian skeletal muscle has not been fully examined.

View Article and Find Full Text PDF

In the hive, a wide range of honeybees tasks such as cell cleaning, nursing, thermogenesis, flight, foraging and inter-individual communication (waggle dance, antennal contact and trophallaxy) depend on proper muscle activity. However, whereas extensive electrophysiological studies have been undertaken over the past ten years to characterize ionic currents underlying the physiological neuronal activity in honeybee, ionic currents underlying skeletal muscle fibre activity in this insect remain, so far, unexplored. Here, we show that, in contrast to many other insect species, action potentials in muscle fibres isolated from adult honeybee metathoracic tibia, are not graded but actual all-or-none responses.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionotovg232dg7ukt8dfe3hahubbqkm4lqj): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once