Publications by authors named "Claude Chabrol"

In this study, we explored the effects of a longer term application, up to 12 weeks, of photobiomodulation in normal, naïve macaque monkeys. Monkeys (n = 5) were implanted intracranially with an optical fibre device delivering photobiomodulation (red light, 670 nm) to a midline midbrain region. Animals were then aldehyde-fixed and their brains were processed for immunohistochemistry.

View Article and Find Full Text PDF

Intracranial application of red to infrared light, known also as photobiomodulation (PBM), has been shown to improve locomotor activity and to neuroprotect midbrain dopaminergic cells in rodent and monkey models of Parkinson's disease. In this study, we explored whether PBM has any influence on the number of tyrosine hydroxylase (TH)cells and the expression of GDNF (glial-derived neurotrophic factor) in the striatum. Striatal sections of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-treated mice and monkeys and 6-hydroxydopamine (6OHDA)-lesioned rats that had PBM optical fibres implanted intracranially (or not) were processed for immunohistochemistry (all species) or western blot analysis (monkeys).

View Article and Find Full Text PDF

We have shown previously that when applied separately, 670nm and 810nm near infrared light (NIr) reduces behavioural deficits and offers neuroprotection in a MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) mouse model of Parkinson's disease. Here, we explored the beneficial outcomes when these NIr wavelengths were applied both together, either concurrently (at the same time) or sequentially (one after the other). Mice received MPTP injections (total of 50mg/kg) and had extracranial application of 670nm and/or 810nm NIr.

View Article and Find Full Text PDF

We have reported previously that intracranial application of near-infrared light (NIr) reduces clinical signs and offers neuroprotection in a subacute MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) monkey model of Parkinson's disease. In this study, we explored whether NIr reduces the gliosis in this animal model. Sections of midbrain (containing the substantia nigra pars compacta; SNc) and striatum were processed for glial fibrillary acidic protein (to label astrocytes; GFAP) and ionised calcium-binding adaptor molecule 1 (to label microglia; IBA1) immunohistochemistry.

View Article and Find Full Text PDF

We have reported previously that intracranial application of near-infrared light (NIr) - when delivered at the lower doses of 25J and 35J - reduces clinical signs and offers neuroprotection in a subacute MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) monkey model of Parkinson's disease. In this study, we explored whether a higher NIr dose (125J) generated beneficial effects in the same MPTP monkey model (n=15). We implanted an NIr (670nm) optical fibre device within a midline region of the midbrain in macaque monkeys, close to the substantia nigra of both sides.

View Article and Find Full Text PDF

OBJECT The authors of this study used a newly developed intracranial optical fiber device to deliver near-infrared light (NIr) to the midbrain of 6-hydroxydopamine (6-OHDA)-lesioned rats, a model of Parkinson's disease. The authors explored whether NIr had any impact on apomorphine-induced turning behavior and whether it was neuroprotective. METHODS Two NIr powers (333 nW and 0.

View Article and Find Full Text PDF

Objective: To examine whether near-infrared light (NIr) treatment reduces clinical signs and/or offers neuroprotection in a subacute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) monkey model of Parkinson disease.

Methods: We implanted an optical fiber device that delivered NIr (670 nm) to the midbrain of macaque monkeys, close to the substantia nigra of both sides. MPTP injections (1.

View Article and Find Full Text PDF

We explored whether 810nm near-infrared light (NIr) offered neuroprotection and/or improvement in locomotor activity in an acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mouse model of Parkinson's disease. Mice received MPTP and 810nm NIr treatments, or not, and were tested for locomotive activity in an open-field test. Thereafter, brains were aldehyde-fixed and processed for tyrosine hydroxylase immunohistochemistry.

View Article and Find Full Text PDF

Object: Previous experimental studies have documented the neuroprotection of damaged or diseased cells after applying, from outside the brain, near-infrared light (NIr) to the brain by using external light-emitting diodes (LEDs) or laser devices. In the present study, the authors describe an effective and reliable surgical method of applying to the brain, from inside the brain, NIr to the brain. They developed a novel internal surgical device that delivers the NIr to brain regions very close to target damaged or diseased cells.

View Article and Find Full Text PDF