Beam position uncertainties along the beam trajectory arise from the accelerator, beamline, and scanning magnets (SMs). They can be monitored in real time, e.g.
View Article and Find Full Text PDFPurpose: This work aims at reviewing challenges and pitfalls in proton facility design related to equipment upgrade or replacement. Proton therapy was initially developed at research institutions in the 1950s which ushered in the use of hospital-based machines in 1990s. We are approaching an era where older commercial machines are reaching the end of their life and require replacement.
View Article and Find Full Text PDFIntroduction: Unscheduled machine downtime can cause treatment interruptions and adversely impact patient treatment outcomes. Conventional Quality Assurance (QA) programs of a proton Pencil Beam Scanning (PBS) system ensure its operational performance by keeping the beam parameters within clinical tolerances but often do not reveal the underlying issues of the device prior to a machine malfunction event. In this study, we propose a Predictive Maintenance (PdM) approach that leverages an advanced analytical tool built on a deep neural network to detect treatment delivery machine issues early.
View Article and Find Full Text PDFBackground: Pencil beam scanning (PBS) monitoring chambers use an ionization control signal, monitor units (MUs), or gigaprotons (Gp) to irradiate a pencil beam and normalize dose calculations. The nozzle deflects the beam from the nozzle axis by an angle subtended at the source-to-axis distance (τ) from the isocenter. If the angle is not correctly considered in calibrations or calculations, it can lead to systematic errors.
View Article and Find Full Text PDFBiomed Phys Eng Express
February 2022
The use of field-specific apertures, routine in scattered or uniform-scanned proton fields, are still a necessity in pencil-beam scanned (PBS) fields to sharpen the penumbral edge at low energies and in high fraction dose application beyond that achievable with small spot size. We describe a model implemented in our clinical pencil-beam algorithm that models the insertion of a shaped aperture, including shapes adapted per energy layer such as may be achieved with a multi-leaf collimator. The model decomposes the spot transport into discrete steps.
View Article and Find Full Text PDFPurpose: This work aims to reduce dose delivery time of pencil beam scanning (PBS) proton plans, which is the dominant factor of total plan delivery time. A proton PBS system, such as Varian ProBeam proton therapy system, can be equipped with the proton dose rate that is linearly proportional to the minimum monitor unit (MU) (i.e.
View Article and Find Full Text PDFTo adopt Monte Carlo (MC) simulations as an independent dose calculation method for proton pencil beam radiotherapy, an interface that converts the plan information in DICOM format into MC components such as geometries and beam source is a crucial element. For this purpose, a DICOM-RT Ion interface (https://github.com/topasmc/dicom-interface) has been developed and integrated into the TOPAS MC code to perform such conversions on-the-fly.
View Article and Find Full Text PDFThe deliverability of proton pencil beam scanning (PBS) plans is subject to the minimum monitor-unit (MU) constraint, while the delivery efficiency depends on the number of proton energy layers. This work develops an inverse optimization method for generating efficiently deliverable PBS plans. The proposed minimum-MU and sparse-energy-layer (MMSEL) constrained inverse optimization method utilizes iterative convex relaxations to handle the nonconvexity from minimum-MU constraint and dose-volume constraints, and regularizes group sparsity of proton spots to minimize the number of energy layers.
View Article and Find Full Text PDFThe deliverability of proton pencil beam scanning (PBS) treatment plans is subject to the minimum monitor unit (MU) constraint. This work introduces an inverse optimization approach to enforce the minimum MU constraint on planned spots, for accurate delivery of the planned dose. We formulate the minimum MU problem as an inverse optimization problem that accounts for the minimum MU constraint, i.
View Article and Find Full Text PDFBackground: In scanned proton beam therapy systematic deviations in spot size at iso-center can occur as a result of changes in the beam-line optics. There is currently no general guideline of the spot size accuracy required clinically. In this work we quantify treatment plan robustness to systematic spot size variations as a function of spot size and spot spacing, and we suggest guidelines for tolerance levels for spot size variations.
View Article and Find Full Text PDFTo promote accurate image-guided radiotherapy (IGRT) for a proton pencil beam scanning (PBS) system, a new quality assurance (QA) procedure employing a cone-shaped scintillator detector has been developed for multiple QA tasks in a semi-automatic manner. The cone-shaped scintillator detector (XRV-124, Logos Systems, CA) is sensitive to both x-ray and proton beams. It records scintillation on the cone surface as a 2D image, from which the geometry of the radiation field that enters and exits the cone can be extracted.
View Article and Find Full Text PDFPencil beam scanning (PBS) periodic quality assurance (QA) programs ensure the beam delivered to patients is within technical specifications. Two critical specifications for PBS delivery are the beam width and position. The aim of this study is to investigate whether a 2D ionization chamber array, such as the MatriXX detector (IBA Dosimetry, Schwarzenbruck, Germany), can be used to characterize submillimeter-sized PBS beam properties.
View Article and Find Full Text PDFWe report the measurement of the beam-vector and tensor asymmetries A_{ed}^{V} and A_{d}^{T} in quasielastic (e[over →],e^{'}p) electrodisintegration of the deuteron at the MIT-Bates Linear Accelerator Center up to missing momentum of 500 MeV/c. Data were collected simultaneously over a momentum transfer range 0.1 View Article and Find Full Text PDF
Background: Spot size σ (in air at isocenter), interspot spacing d, and spot charge q influence dose delivery efficiency and plan quality in Intensity Modulated Proton Therapy (IMPT) treatment planning. The choice and range of parameters varies among different manufacturers. The goal of this work is to demonstrate the influence of the spot parameters on dose quality and delivery in IMPT treatment plans, to show their interdependence, and to make practitioners aware of the spot parameter values for a certain facility.
View Article and Find Full Text PDFPurpose: This work aims to characterize a proton pencil beam scanning (PBS) and passive double scattering (DS) systems as well as to measure parameters relevant to the relative biological effectiveness (RBE) of the beam using a silicon on insulator (SOI) microdosimeter with well-defined 3D sensitive volumes (SV). The dose equivalent downstream and laterally outside of a clinical PBS treatment field was assessed and compared to that of a DS beam.
Methods: A novel silicon microdosimeter with well-defined 3D SVs was used in this study.
Background: Spot charge is one parameter of pencil-beam scanning dose delivery system whose accuracy is typically high but whose required value has not been investigated. In this work we quantify the dose impact of spot charge inaccuracies on the dose distribution in patients. Knowing the effect of charge errors is relevant for conventional proton machines, as well as for new generation proton machines, where ensuring accurate charge may be challenging.
View Article and Find Full Text PDFWhile proton beam models in treatment planning systems are generally assumed invariant with respect to the beam deliveries at different gantry angles. Physical properties of scanning pencil beams can change. The gantry angle dependent properties include the delivered charge to the monitor unit chamber, the spot position and the spot shape.
View Article and Find Full Text PDFProton pencil beam scanning (PBS) treatment plans are made of numerous unique spots of different weights. These weights are optimized by the treatment planning systems, and sometimes fall below the deliverable threshold set by the treatment delivery system. The purpose of this work is to investigate a Greedy reassignment algorithm to mitigate the effects of these low weight pencil beams.
View Article and Find Full Text PDFDelivery of pencil beam scanning (PBS) requires the on-line measurement of several beam parameters. If the measurement is outside of specified tolerances and a binary threshold algorithm is used, the beam will be paused. Given instrumentation and statistical noise such a system can lead to many pauses which could increase the treatment time.
View Article and Find Full Text PDFPhys Med Biol
October 2014
The enormous advances in the understanding of human anatomy, physiology and pathology in recent decades have led to ever-improving methods of disease prevention, diagnosis and treatment. Many of these achievements have been enabled, at least in part, by advances in ionizing radiation detectors. Radiology has been transformed by the implementation of multi-slice CT and digital x-ray imaging systems, with silver halide films now largely obsolete for many applications.
View Article and Find Full Text PDFTreatment planning databases for pencil beam scanning can be large, difficult to manage and problematic for quality assurance when they contain tabulated Bragg peaks at small range resolution. Smaller range resolution, in the absence of an accurate interpolation method, improves the accuracy in dose calculations. In this work, we derive an approximate scaling function to interpolate between tabulated Bragg peaks, and determine the accuracy of this interpolation technique and the minimum number of tabulated peaks in a treatment planning database.
View Article and Find Full Text PDFThe γ-index is used routinely to establish correspondence between two dose distributions. The definition of the γ-index can be written with a single equation but solving this equation at millions of points is computationally expensive, especially in three dimensions. Our goal is to extend the vector-equation method in Bakai et al (2003 Phys.
View Article and Find Full Text PDFThe relative biological effectiveness (RBE) of passive scattered (PS) and pencil beam scanned (PBS) proton beam delivery techniques for uniform beam configurations was determined by clonogenic survival. The radiobiological impact of modulated beam configurations on cell survival occurring in- or out-of-field for both delivery techniques was determined with intercellular communication intact or physically inhibited. Cell survival responses were compared to those observed using a 6 MV photon beam produced with a linear accelerator.
View Article and Find Full Text PDFPurpose: Patient specific apertures are commonly employed in passive double scattering (DS) proton therapy (PT). This study was aimed at identifying the potential benefits of using such an aperture in pencil beam scanning (PBS).
Methods: An accurate Geant4 Monte Carlo model of the PBS PT treatment head at Massachusetts General Hospital (MGH) was developed based on an existing model of the passive double-scattering (DS) system.