Publications by authors named "Clarlynda R Williams-DeVane"

Metabolic syndrome (MetS) is multifaceted. Risk factors include visceral adiposity, dyslipidemia, hyperglycemia, hypertension and environmental stimuli. MetS leads to an increased risk of cardiovascular disease, type 2 diabetes and stroke.

View Article and Find Full Text PDF

Background: We examined racial differences in the expression of eight genes and their associations with risk of recurrence among 478 white and 495 black women who participated in the Carolina Breast Cancer Study Phase 3.

Methods: Breast tumor samples were analyzed for PAM50 subtype and for eight genes previously found to be differentially expressed by race and associated with breast cancer survival: ACOX2, MUC1, FAM177A1, GSTT2, PSPH, PSPHL, SQLE, and TYMS. The expression of these genes according to race was assessed using linear regression and each gene was evaluated in association with recurrence using Cox regression.

View Article and Find Full Text PDF

The diagnosis and treatment of childhood asthma is complicated by its mechanistically distinct subtypes (endotypes) driven by genetic susceptibility and modulating environmental factors. Clinical biomarkers and blood gene expression were collected from a stratified, cross-sectional study of asthmatic and non-asthmatic children from Detroit, MI. This study describes four distinct asthma endotypes identified via a purely data-driven method.

View Article and Find Full Text PDF

Background: Complex diseases are often difficult to diagnose, treat and study due to the multi-factorial nature of the underlying etiology. Large data sets are now widely available that can be used to define novel, mechanistically distinct disease subtypes (endotypes) in a completely data-driven manner. However, significant challenges exist with regard to how to segregate individuals into suitable subtypes of the disease and understand the distinct biological mechanisms of each when the goal is to maximize the discovery potential of these data sets.

View Article and Find Full Text PDF

A publicly available toxicogenomics capability for supporting predictive toxicology and meta-analysis depends on availability of gene expression data for chemical treatment scenarios, the ability to locate and aggregate such information by chemical, and broad data coverage within chemical, genomics, and toxicological information domains. This capability also depends on common genomics standards, protocol description, and functional linkages of diverse public Internet data resources. We present a survey of public genomics resources from these vantage points and conclude that, despite progress in many areas, the current state of the majority of public microarray databases is inadequate for supporting these objectives, particularly with regard to chemical indexing.

View Article and Find Full Text PDF

Summary: The Distributed Structure-Searchable Toxicity (DSSTox) ARYEXP and GEOGSE files are newly published, structure-annotated files of the chemical-associated and chemical exposure-related summary experimental content contained in the ArrayExpress Repository and Gene Expression Omnibus (GEO) Series (based on data extracted on September 20, 2008). ARYEXP and GEOGSE contain 887 and 1064 unique chemical substances mapped to 1835 and 2381 chemical exposure-related experiment accession IDs, respectively. The standardized files allow one to assess, compare and search the chemical content in each resource, in the context of the larger DSSTox toxicology data network, as well as across large public cheminformatics resources such as PubChem (http://pubchem.

View Article and Find Full Text PDF