Forty-seven patients with metastatic disease at diagnosis or recurrent Ewing sarcoma (EWS) received high-dose chemotherapy (HDC) followed by tandem (n = 20, from February 13, 1997, to October 24, 2002) or single (n = 27, from October 1, 2004, to September 5, 2018) autologous hematopoietic stem cell transplantation (ASCT). To our knowledge, this is the largest single-institution study with sustained long-term follow-up exceeding 10 years. All patients who underwent single ASCT received a novel conditioning regimen with busulfan, melphalan, and topotecan.
View Article and Find Full Text PDFBackground: Myeloablative therapy for high-risk neuroblastoma commonly includes melphalan. Increased cellular glutathione (GSH) can mediate melphalan resistance. Buthionine sulfoximine (BSO), a GSH synthesis inhibitor, enhances melphalan activity against neuroblastoma cell lines, providing the rationale for a Phase 1 trial of BSO-melphalan.
View Article and Find Full Text PDFPurpose: To evaluate BSO-mediated glutathione (GSH) depletion in combination with L-PAM for children with recurrent or refractory high-risk neuroblastoma (NB) as a means to enhance alkylator sensitivity.
Procedure: This pilot study (NCI #T95-0092) administered L-S,R-buthionine sulfoximine (BSO) as a bolus followed by 72 hr continuous infusion of either 0.75 g/m(2)/hr (level 1) or 1.
Relapse of neuroblastoma (NB) commonly occurs in hypoxic tissues. Buthionine sulfoximine (BSO), an inhibitor of glutathione (GSH) synthesis, is cytotoxic for NB cell lines in atmospheric oxygen (20% O(2)). Tirapazamine (TPZ) is a bioreductive agent that forms a toxic-free radical in hypoxia.
View Article and Find Full Text PDF