Publications by authors named "Clark Phillipson"

The evaluation of humoral protective immunity against SARS-CoV-2 remains crucial in understanding both natural immunity and protective immunity conferred by the several vaccines implemented in the fight against COVID-19. The reference standard for the quantification of antibodies capable of neutralizing SARS-CoV-2 is the plaque-reduction neutralization test (PRNT). However, given that it is a laboratory-developed assay, validation is crucial in order to ensure sufficient specificity and intra- and interassay precision.

View Article and Find Full Text PDF

Prospectively acquired Canadian cerebrospinal fluid samples were used to assess the performance characteristics of three ante-mortem tests commonly used to support diagnoses of Creutzfeldt-Jakob disease. The utility of the end-point quaking-induced conversion assay as a test for Creutzfeldt-Jakob disease diagnoses was compared to that of immunoassays designed to detect increased amounts of the surrogate markers 14-3-3γ and hTau. The positive predictive values of the end-point quaking-induced conversion, 14-3-3γ, and hTau tests conducted at the Prion Diseases Section of the Public Health Agency of Canada were 96%, 68%, and 66%, respectively.

View Article and Find Full Text PDF

Multiple cell types and complex connection networks are an intrinsic feature of brain tissue. In this study we used expression profiling of specific microscopic regions of heterogeneous tissue sections isolated by laser capture microdissection (LCM) to determine insights into the molecular basis of brain pathology in prion disease. Temporal profiles in two mouse models of prion disease, bovine spongiform encephalopathy (BSE) and a mouse-adapted strain of scrapie (RML) were performed in microdissected regions of the CA1 hippocampus and granular layer of the cerebellum which are both enriched in neuronal cell bodies.

View Article and Find Full Text PDF

Important roles of microRNAs (miRNAs) in regulating the host response during viral infection have begun to be defined. However, little is known about the functional roles of miRNAs within an in vivo acute viral encephalitis model. We therefore identified global changes in miRNA expression during acute herpes simplex virus type 1 (HSV-1) encephalitis (HSVE) in mice.

View Article and Find Full Text PDF

Background: Prion infection results in progressive neurodegeneration of the central nervous system invariably resulting in death. The pathological effects of prion diseases in the brain are morphologically well defined, such as gliosis, vacuolation, and the accumulation of disease-specific protease-resistant prion protein (PrPSc). However, the underlying molecular events that lead to the death of neurons are poorly characterised.

View Article and Find Full Text PDF

Transmissible spongiform encephalopathy strains demonstrate specific prion characteristics, each with specific incubation times, and strain-specific patterns of deposition of the misfolded isoform of prion, PrPSc, in the brains of infected individuals. Different biochemical properties, including glycosylation profiles and the degree of proteinase resistance, have been shown to be strain-specific. However, no relationship between these properties and the phenotypic differences in the subsequent diseases has as yet been determined.

View Article and Find Full Text PDF

Genes that are expressed differentially in the central nervous system of mice during infection with mouse-adapted scrapie agents were identified in this study. cDNA microarrays were used to examine gene-expression profiles at early, middle (preclinical) and late (clinical) time points after inoculation. A number of genes that showed significant changes in expression during the clinical stage of disease were identified.

View Article and Find Full Text PDF

The tumor suppressor protein, p53 is a transcription factor that not only activates expression of genes containing the p53 binding site but also can repress the expression of some genes lacking this binding site. Previous studies have shown that overexpression of wild-type p53 leads to apoptosis and cell cycle arrest. DNA damage, such as that caused by UV irradiation, results in p53 stabilization and nuclear localization that subsequently induces apoptosis.

View Article and Find Full Text PDF