Solitary fibrous tumor (SFT) is a rare, non-hereditary soft tissue sarcoma thought to originate from fibroblastic mesenchymal stem cells. The etiology of SFT is thought to be due to an environmental intrachromosomal gene fusion between NGFI-A-binding protein 2 (NAB2) and signal transducer and activator protein 6 (STAT6) genes on chromosome 12, wherein the activation domain of STAT6 is fused with the DNA-binding domain of NAB2 resulting in the oncogenesis of SFT. All NAB2-STAT6 fusion variations discovered in SFTs contain the C-terminal of STAT6 transcript, and thus can serve as target site for antisense oligonucleotides (ASOs)-based therapies.
View Article and Find Full Text PDFSolitary fibrous tumor (SFT) is a rare soft-tissue sarcoma. This nonhereditary cancer is the result of an environmental intrachromosomal gene fusion between NAB2 and STAT6 on chromosome 12, which fuses the activation domain of STAT6 with the repression domain of NAB2. Currently there is not an approved chemotherapy regimen for SFTs.
View Article and Find Full Text PDFDespite advancements in early detection and treatment, atherosclerosis remains the leading cause of death across all cardiovascular diseases (CVD). Biomechanical analysis of atherosclerotic lesions has the potential to reveal biomechanically instable or rupture-prone regions. Treatment decisions rarely consider the biomechanics of the stenosed lesion due in-part to difficulties in obtaining this information in a clinical setting.
View Article and Find Full Text PDFNumerical simulations of coupled hemodynamics and leukocyte transport and adhesion inside coronary arteries have been performed. Realistic artery geometries have been obtained for a set of four patients from intravascular ultrasound and angiography images. The numerical model computes unsteady three-dimensional blood hemodynamics and leukocyte concentration in the blood.
View Article and Find Full Text PDFTissue Eng Part C Methods
November 2019
Over the past two decades, the increase in prevalence of cardiovascular diseases and the limited availability of autologous blood vessels and saphenous vein grafts have motivated the development of tissue-engineered vascular grafts (TEVGs). However, compliance mismatch and poor mechanical properties of the TEVGs remain as two major issues that need to be addressed. Researchers have investigated the role of various culture conditions and mechanical conditioning in deposition and orientation of collagen fibers, which are the key structural components in the vascular wall; however, the intrinsic complexity of mechanobiological interactions demands implementing new engineering approaches that allow researchers to investigate various scenarios more efficiently.
View Article and Find Full Text PDFIntroduction: The purpose of this study was to compare the stress distributions in the teeth treated through minimally invasive access (MIA) designs to those of the teeth treated through traditional straight-line access and their relationship to the final restoration using three-dimensional finite element analysis (FEA).
Materials And Methods: Four FEA models of an extracted mandibular first molar were constructed. An intact model served as the control, whereas the other three were prepared with either an MIA or traditional straight-line access.
Cleft Palate Craniofac J
March 2018
Background: Sculpted physical models and castings of the anatomy of cleft lip and palate are used for parent, patient, and trainee education of cleft lip and palate conditions. In this study, we designed a suite of digital 3-dimensional (3D) models of cleft lip and palate anatomy with additive manufacturing techniques for patient education.
Methods: CT scans of subjects with isolated cleft palate, unilateral and bilateral cleft lip and palate, and a control were obtained.
A coupled agent-based model (ABM) and finite element analysis (FEA) computational framework is developed to study the interplay of bio-chemo-mechanical factors in blood vessels and their role in maintaining homeostasis. The agent-based model implements the power of REPAST Simphony libraries and adapts its environment for biological simulations. Coupling a continuum-level model (FEA) to a cellular-level model (ABM) has enabled this computational framework to capture the response of blood vessels to increased or decreased levels of growth factors, proteases and other signaling molecules (on the micro scale) as well as altered blood pressure.
View Article and Find Full Text PDFRecent literature indicates that the long-term success of dental implants is, in part, attributed to how dental crowns are attached to their associated implants. The commonly utilized method for crown attachment - cementation, has been criticized because of recent links between residual cement and peri-implant disease. Residual cement extrusion from crown-abutment margins post-crown seating is a growing concern.
View Article and Find Full Text PDFA new experimental setup has been implemented to precisely measure the deformations of an entire model abdominal aortic aneurysm (AAA). This setup addresses a gap between the computational and experimental models of AAA that have aimed at improving the limited understanding of aneurysm development and rupture. The experimental validation of the deformations from computational approaches has been limited by a lack of consideration of the large and varied deformations that AAAs undergo in response to physiologic flow and pressure.
View Article and Find Full Text PDFHow much and how the thrombus supports the wall of an abdominal aortic aneurysm (AAA) is unclear. While some previous studies have indicated that thrombus lacks the mechanical integrity to support much load compared with the aneurysm wall, others have shown that removing thrombus in computational AAA models drastically changes aneurysm wall stress. Histopathological studies have shown that thrombus properties vary through the thickness and it can be porous.
View Article and Find Full Text PDFPurpose: To examine the solid mechanical effects of varying stent design and atherosclerotic plaque stiffness on the biomechanical environment induced in a diseased artery wall model.
Methods: Computational modeling techniques were employed to investigate the final radius of the lumen and artery wall stresses after stent implantation. Two stent designs were studied (one stiff and one less stiff).
The biomechanical interaction of stents and the arteries into which they are deployed is a potentially important consideration for long-term success. Adverse arterial reactions to excessive stress and the resulting damage have been linked to the development of restenosis. Complex geometric features often encountered in these procedures can confound treatment.
View Article and Find Full Text PDFThe deployment of a vascular stent aims to increase lumen diameter for the restoration of blood flow, but the accompanied alterations in the mechanical environment possibly affect the long-term patency of these devices. The primary aim of this investigation was to develop an algorithm to optimize stent design, allowing for consideration of competing solid mechanical concerns (wall stress, lumen gain, and cyclic deflection). Finite element modeling (FEM) was used to estimate artery wall stress and systolic/diastolic geometries, from which single parameter outputs were derived expressing stress, lumen gain, and cyclic artery wall deflection.
View Article and Find Full Text PDFA stent is a device designed to restore flow through constricted arteries. These tubular scaffold devices are delivered to the afflicted region and deployed using minimally invasive techniques. Stents must have sufficient radial strength to prop the diseased artery open.
View Article and Find Full Text PDF