Adult tissue stem cells contribute to tissue homeostasis and repair but the long-lived neurons in the human adult cerebral cortex are not replaced, despite evidence for a limited regenerative response. However, the adult cortex contains a population of proliferating oligodendrocyte progenitor cells (OPCs). We examined the capacity of rat cortical OPCs to be re-specified to a neuronal lineage both and .
View Article and Find Full Text PDFBackground: Alzheimer's disease (AD) is a chronic neurodegenerative disorder with a progressive loss of cognitive function. Currently, no effective treatment regimen is available. Lithium, a mood stabilizer for bipolar disorder, exerts broad neuroprotective and neurotrophic actions and improves cognitive function.
View Article and Find Full Text PDFCue-induced cocaine craving progressively intensifies (incubates) after withdrawal from cocaine self-administration in rats and humans. In rats, the expression of incubation ultimately depends on Ca-permeable AMPARs that accumulate in synapses onto medium spiny neurons (MSNs) in the NAc core. However, the delay in their accumulation (∼1 month after drug self-administration ceases) suggests earlier waves of plasticity.
View Article and Find Full Text PDFTraumatic brain injury (TBI), and related diseases such as chronic traumatic encephalopathy (CTE) and Alzheimer's (AD), are of increasing concern in part due to enhanced awareness of their long-term neurological effects on memory and behavior. Repeated concussions, vs. single concussions, have been shown to result in worsened and sustained symptoms including impaired cognition and histopathology.
View Article and Find Full Text PDFTraditional approaches to studying Alzheimer's disease (AD) using mouse models and cell lines have advanced our understanding of AD pathogenesis. However, with the growing divide between model systems and clinical therapeutic outcomes, the limitations of these approaches are increasingly apparent. Thus, to generate more clinically relevant systems that capture pathological cascades within human neurons, we generated human-induced neurons (HiNs) from AD and non-AD individuals to model cell autonomous disease properties.
View Article and Find Full Text PDFNeural recording and stimulation with high spatial and temporal resolution are highly desirable in the study of neurocommunication and diseases. Planar multiple microelectrode arrays (MEA) or quasi-three-dimensional (3D) MEA with fixed height have been proposed by many researchers and become commercially available. In this paper, we present the design, fabrication, and test of a novel true 3D multiple electrode array for brain slice stimulation and recording.
View Article and Find Full Text PDFThe mechanisms underlying ryanodine receptor (RyR) dysfunction associated with Alzheimer disease (AD) are still not well understood. Here, we show that neuronal RyR2 channels undergo post-translational remodeling (PKA phosphorylation, oxidation, and nitrosylation) in brains of AD patients, and in two murine models of AD (3 × Tg-AD, APP /PS1 ). RyR2 is depleted of calstabin2 (KFBP12.
View Article and Find Full Text PDFBiochem Biophys Res Commun
February 2017
The current state of the AD research field is highly dynamic is some respects, while seemingly stagnant in others. Regarding the former, our current lack of understanding of initiating disease mechanisms, the absence of effective treatment options, and the looming escalation of AD patients is energizing new research directions including a much-needed re-focusing on early pathogenic mechanisms, validating novel targets, and investigating relevant biomarkers, among other exciting new efforts to curb disease progression and foremost, preserve memory function. With regard to the latter, the recent disappointing series of failed Phase III clinical trials targeting Aβ and APP processing, in concert with poor association between brain Aβ levels and cognitive function, have led many to call for a re-evaluation of the primacy of the amyloid cascade hypothesis.
View Article and Find Full Text PDFApolipoprotein E receptor 2 (ApoER2) is an apolipoprotein E receptor involved in long-term potentiation, learning, and memory. Given its role in cognition and its association with the Alzheimer's disease (AD) risk gene, apoE, ApoER2 has been proposed to be involved in AD, though a role for the receptor in the disease is not clear. ApoER2 signaling requires amino acids encoded by alternatively spliced exon 19.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a multifactorial disorder of unknown etiology. Mechanistically, beta amyloid peptides (Aβ) and elevated Ca(2+) have been implicated as proximal and likely interactive features of the disease process. We tested the hypothesis that proximity to Aβ plaque might exacerbate activity-dependent neuronal Ca(2+) signaling in hippocampal pyramidal neurons from APPSWE/PS1M146V mice.
View Article and Find Full Text PDFThe well-known interferon-inducer tilorone was found to possess potent affinity for the agonist site of the α7 neuronal nicotinic receptor (K(i)=56 nM). SAR investigations determined that both basic sidechains are essential for potent activity, however active monosubstituted derivatives can also be prepared if the flexible sidechains are replaced with conformationally rigidified cyclic amines. Analogs in which the fluorenone core is replaced with either dibenzothiophene-5,5-dioxide or xanthenone also retain potent activity.
View Article and Find Full Text PDFGenistein and 5-hydroxyindole (5-HI) potentiate the α7 nicotinic acetylcholine receptor current by primarily increasing peak amplitude, a property of type I α7 positive allosteric modulation. In this study, the effects of these two compounds were investigated at two different α7/5-HT(3) chimeras (chimera 1, comprising of extracellular α7 N-terminus fused to the remainder of 5-HT(3A), and chimera 2 containing an additional α7 encoded M2-M3 loop), and wild-type α7 and 5-HT(3A) receptors. Agonist-evoked responses, examined by expression of the chimeras in Xenopus laevis oocytes or HEK-293 cells, revealed that currents decayed slower and compounds {rank order: N-[(3R)-1-azabicyclo[2.
View Article and Find Full Text PDFEnhancement of alpha7 nicotinic acetylcholine receptor (nAChR) activity is considered a therapeutic approach for ameliorating cognitive deficits present in Alzheimer's disease and schizophrenia. In this study, we describe the in vitro profile of a novel selective alpha7 nAChR agonist, 5-(6-[(3R)-1-azabicyclo[2,2,2]oct-3-yloxy]pyridazin-3-yl)-1H-indole (ABT-107). ABT-107 displayed high affinity binding to alpha7 nAChRs [rat or human cortex, [(3)H](1S,4S)-2,2-dimethyl-5-(6-phenylpyridazin-3-yl)-5-aza-2-azoniabicyclo[2.
View Article and Find Full Text PDFBackground And Purpose: Several agonists of the alpha7 nicotinic acetylcholine receptor (nAChR) have been developed for treatment of cognitive deficits. However, agonist efficacy in vivo is difficult to reconcile with rapid alpha7 nAChR desensitization in vitro; and furthermore, the correlation between in vitro receptor efficacy and in vivo behavioural efficacy is not well delineated. The possibility that agonists of this receptor actually function in vivo as inhibitors via desensitization has not been finally resolved.
View Article and Find Full Text PDFNeuronal acetylcholine receptors (nAChRs) of the alpha7 subtype are ligand-gated ion channels that are widely distributed throughout the central nervous system and considered as attractive targets for the treatment of various neuropsychiatric and neurodegenerative diseases. Both agonists and positive allosteric modulators (PAMs) are being developed as means to enhance the function of alpha7 nAChRs. The in vitro characterization of alpha7 ligands, including agonists and PAMs, relies on multiple technologies, but only electrophysiological measurements assess the channel activity directly.
View Article and Find Full Text PDFalpha4beta2 neuronal nicotinic receptors (nAChRs) can exist in high and low sensitivity states possibly due to distinct stoichiometries during subunit assembly: (alpha4)(2)(beta2)(3) pentamer (high sensitivity, HS) and (alpha4)(3)(beta2)(2) pentamer (low sensitivity, LS). To determine if there is a linkage between HS or LS states and receptor-mediated responses in brain, we profiled several clinically studied alpha4beta2* nAChR agonists for the displacement of radioligand binding to alpha4beta2 [(3)H]-cytisine sites in rat brain membranes, effects on stimulation of [(3)H]-dopamine release from slices of rat prefrontal cortex and striatum, and activation of HS and LS human alpha4beta2 nAChRs expressed in Xenopus laevis oocytes. Binding affinities (pK(i)) and potency (pEC(50)) values for [(3)H]-dopamine release closely correlated with a rank order: varenicline>(-)-nicotine>AZD3480>dianicline congruent with ABT-089.
View Article and Find Full Text PDFNumerous pharmaceutical efforts have targeted neuronal nicotinic receptors (nAChRs) for amelioration of cognitive deficits. While alpha4beta2 and alpha7 are the more prominent nAChR in brain, other heteromeric nAChR can have important impact on agonist pharmacology. ABT-089 is a pioneer nAChR agonist found to enhance cognitive function with an exceptionally low incidence of adverse effects.
View Article and Find Full Text PDFThe discovery of a series of pyrrole-sulfonamides as positive allosteric modulators (PAM) of alpha7 nAChRs is described. Optimization of this series led to the identification of 19 (A-867744), a novel type II PAM with good potency and selectivity. Compound 19 showed acceptable pharmacokinetic profile across species and brain levels sufficient to modulate alpha7 nAChRs.
View Article and Find Full Text PDFJ Pharmacol Exp Ther
July 2009
Targeting alpha7 neuronal acetylcholine receptors (nAChRs) with selective agonists and positive allosteric modulators (PAMs) is considered a therapeutic approach for managing cognitive deficits in schizophrenia and Alzheimer's disease. In this study, we describe a novel type II alpha7 PAM, 4-(5-(4-chlorophenyl)-2-methyl-3-propionyl-1H-pyrrol-1-yl)benzenesulfonamide (A-867744), that exhibits a unique pharmacological profile. In oocytes expressing alpha7 nAChRs, A-867744 potentiated acetylcholine (ACh)-evoked currents, with an EC(50) value of approximately 1 microM.
View Article and Find Full Text PDFAmong the diverse sets of nicotinic acetylcholine receptors (nAChRs), the alpha7 subtype is highly expressed in the hippocampus and cortex and is thought to play important roles in a variety of cognitive processes. In this review, we describe the properties of a novel biaryl diamine alpha7 nAChR agonist, A-582941. A-582941 was found to exhibit high-affinity binding and partial agonism at alpha7 nAChRs, with acceptable pharmacokinetic properties and excellent distribution to the central nervous system (CNS).
View Article and Find Full Text PDFThe alpha7 nicotinic acetylcholine receptor (nAChR) plays an important role in cognitive processes and may represent a drug target for treating cognitive deficits in neurodegenerative and psychiatric disorders. In the present study, we used a novel alpha7 nAChR-selective agonist, 2-methyl-5-(6-phenyl-pyridazin-3-yl)-octahydro-pyrrolo[3,4-c]pyrrole (A-582941) to interrogate cognitive efficacy, as well as examine potential cellular mechanisms of cognition. Exhibiting high affinity to native rat (Ki = 10.
View Article and Find Full Text PDFAugmentation of nicotinic alpha7 receptor function is considered to be a potential therapeutic strategy aimed at ameliorating cognitive and mnemonic dysfunction in relation to debilitating pathological conditions, such as Alzheimer's disease and schizophrenia. In the present report, a novel positive allosteric modulator of the alpha7 nicotinic acetylcholine receptor (nAChR), 1-(5-chloro-2-hydroxy-phenyl)-3-(2-chloro-5-trifluoromethyl-phenyl)-urea (NS1738), is described. NS1738 was unable to displace or affect radioligand binding to the agonist binding site of nicotinic receptors, and it was devoid of effect when applied alone in electrophysiological paradigms.
View Article and Find Full Text PDFSelective modulation of alpha7 nicotinic acetylcholine receptors (nAChRs) is thought to regulate processes impaired in schizophrenia, Alzheimer's disease, and other dementias. One approach to target alpha7 nAChRs is by positive allosteric modulation. Structurally diverse compounds, including PNU-120596, 4-naphthalene-1-yl-3a,4,5,9b-tetrahydro-3-H-cyclopenta[c]quinoline-8-sulfonic acid amide (TQS), and 5-hydroxyindole (5-HI) have been identified as positive allosteric modulators (PAMs), but their receptor interactions and pharmacological profiles remain to be fully elucidated.
View Article and Find Full Text PDFPrevious studies in other laboratories have shown that alpha4beta2 nicotinic acetylcholine receptor (nAChR) exhibits a biphasic concentration-response relationship for ACh with low and high EC50 components, and that the low EC50 component can be augmented by decreasing the alpha4:beta2 message ratio or incubating overnight in nicotine or at low temperature (Zwart and Vijverberg, 1998; Covernton and Connolly, 2000; Buisson and Bertrand, 2001; Nelson et al., 2003; Zhou et al., 2003).
View Article and Find Full Text PDF