Hepatic metabolism of methionine is the source of cysteine, the precursor of glutathione, the major intracellular antioxidant in the body. Methionine also is the immediate precursor of SAM (S-adenosylmethionine) the key methyl donor for phosphatidylcholine synthesis required for the export of VLDL (very-low-density lipoprotein) triacylglycerols (triglycerides) from the liver. We have examined the kinetics of methionine, its transmethylation and trans-sulfuration with estimates of whole body rate of protein turnover and urea synthesis in clinically stable biopsy-confirmed subjects with NASH (non-alcoholic steatohepatitis).
View Article and Find Full Text PDFBackground: Hyperhomocysteinemia during pregnancy, which is a consequence of perturbations in methionine and/or folate metabolism, has been implicated in adverse outcomes such as neural tube defects, preeclampsia, spontaneous abortion, and premature delivery. The adaptive changes in methionine metabolism during pregnancy in humans have not been determined.
Objective: Our objective was to examine the kinetics of methionine and its rate of transsulfuration and transmethylation in healthy women with advancing gestation.
Am J Physiol Gastrointest Liver Physiol
September 2009
The rates of oxidation of glycine and ureagenesis were quantified in the basal state and in response to an intravenous infusion of intralipid with heparin (IL) in healthy subjects (n = 8) and in subjects with nonalcoholic steatohepatitis (NASH) (n = 6). During fasting, no significant difference in weight-specific rate of appearance (R(a)) of glycine, glycine oxidation, and urea synthesis was observed. Intralipid infusion resulted in a significant increase in plasma beta-hydroxybutyrate in both groups.
View Article and Find Full Text PDF