Childhood stunting is a serious public health concern in Rwanda. Although stunting causes have been documented, we still lack a more in-depth understanding of their local factors at a more detailed geographic level. We cross-sectionally examined 615 height-for-age prevalence observations in the Northern Province of Rwanda, linked with their related covariates, to explore the spatial heterogeneity in the low height-for-age prevalence by fitting linear and non-linear spatial regression models and explainable machine learning.
View Article and Find Full Text PDFBackground: In Northern Province, Rwanda, stunting is common among children aged under 5 years. However, previous studies on spatial analysis of childhood stunting in Rwanda did not assess its randomness and clustering, and none were conducted in Northern Province. We conducted a spatial-pattern analysis of childhood undernutrition to identify stunting clusters and hotspots for targeted interventions in Northern Province.
View Article and Find Full Text PDFAs found in the health studies literature, the levels of climate association between epidemiological diseases have been found to vary across regions. Therefore, it seems reasonable to allow for the possibility that relationships might vary spatially within regions. We implemented the geographically weighted random forest (GWRF) machine learning method to analyze ecological disease patterns caused by spatially non-stationary processes using a malaria incidence dataset for Rwanda.
View Article and Find Full Text PDF