Single photon emitters (SPEs) in low-dimensional layered materials have recently gained a large interest owing to the auspicious perspectives of integration and extreme miniaturization offered by this class of materials. However, accurate control of both the spatial location and the emission wavelength of the quantum emitters is essentially lacking to date, thus hindering further technological steps towards scalable quantum photonic devices. Here, we evidence SPEs in high purity synthetic hexagonal boron nitride (hBN) that can be activated by an electron beam at chosen locations.
View Article and Find Full Text PDFThe problem of scattered radiation correction in computed tomography (CT) is well known because scatter induces a bias, a loss of contrast and artifacts. Numerous strategies have been proposed in conventional CT (using energy-integrating detectors) but the problem is still open in the field of spectral CT, a new imaging technique based on energy-selective photon counting detectors. The aim of the present study is to introduce a scatter correction method adapted to multi-energy imaging and based on the use of a primary modulator mask.
View Article and Find Full Text PDF