Skeletal muscle plasticity and its adaptation to exercise is a topic that is widely discussed and investigated due to its primary role in the field of exercise performance and health promotion. Repetitive muscle contraction through exercise stimuli leads to improved cardiovascular output and the regulation of endothelial dysfunction and metabolic disorders such as insulin resistance and obesity. Considerable improvements in proteomic tools and data analysis have broth some new perspectives in the study of the molecular mechanisms underlying skeletal muscle adaptation in response to physical activity.
View Article and Find Full Text PDFExpert Rev Mol Diagn
June 2015
Regular exercise is one of the best ways to maintain health and to prevent and control several chronic diseases. Identifying the molecular mechanisms associated with benefits of exercise is crucial and miRNAs have been suggested to be key players. Understanding the roles of miRNAs in these processes provides an opportunity to improve the clinical application of using exercise as a therapeutic intervention.
View Article and Find Full Text PDFBackground: Exercise is a non-pharmacologic agent widely used for hypertension control, where low intensity is often associated with blood pressure reduction. Maximal lactate steady state (MLSS) was recently identified in spontaneously hypertensive rats (SHRs) as an important step in establishing secure intensities for prescribing exercise for hypertensive phenotypes. Here we verified the effects of training around MLSS, 20% below MLSS, and 15% above MLSS on aerobic fitness and blood pressure status of SHR.
View Article and Find Full Text PDFUnlabelled: NanoUPLC/MS(E) was used to verify the effects of 8weeks of low (SHR-LIT=4) and high (SHR-HIT=4) intensity training over the left ventricle proteome of hypertensive rats (SHR-C=4). Training enhanced the aerobic capacity and reduced the systolic blood pressure in all exercised rats. NanoUPLC/MS(E) identified 250 proteins, with 233 in common to all groups and 16 exclusive to SHR-C, 2 to SHR-LIT, and 2 to the SHR-HIT.
View Article and Find Full Text PDFContext: Circulating miRNAs are potential biomarkers that can be important molecules driving cell-to-cell communication.
Objective: To investigate circulating muscle-specific miRNAs in recreational athletes.
Materials And Methods: Three miRNAs from whole plasma before and after a half-marathon were analyzed by qPCR.
Background: Obesity is a multifactor disease associated with cardiovascular disorders such as hypertension. Recently, gut microbiota was linked to obesity pathogenesisand shown to influence the host metabolism. Moreover, several factors such as host-genotype and life-style have been shown to modulate gut microbiota composition.
View Article and Find Full Text PDFBlood carries a wide array of biomolecules, including nutrients, hormones, and molecules that are secreted by cells for specific biological functions. The recent finding of stable RNA of both endogenous and exogenous origin in circulation raises a number of questions and opens a broad, new field: exploring the origins, functions, and applications of these extracellular RNA molecules. These findings raise many important questions, including: what are the mechanisms of export and cellular uptake, what is the nature and source of their stability, what molecules do they interact with in the blood, and what are the possible biological functions of the circulating RNA? This review summarizes some key recent developments in circulating RNA research and discusses some of the open questions in the field.
View Article and Find Full Text PDFSince microRNAs (miRNAs) were discovered, their impact on regulating various biological activities has been a surprising and exciting field. Knowing the entire repertoire of these small molecules is the first step to gain a better understanding of their function. High throughput discovery tools such as next-generation sequencing significantly increased the number of known miRNAs in different organisms in recent years.
View Article and Find Full Text PDFExercise research has always drawn the attention of the scientific community because it can be widely applied to sport training, health improvement, and disease prevention. For many years numerous tools have been used to investigate the several physiological adaptations induced by exercise stimuli. Nowadays a closer look at the molecular mechanisms underlying metabolic pathways and muscular and cardiovascular adaptation to exercise are among the new trends in exercise physiology research.
View Article and Find Full Text PDFCoffee seed development is accompanied by severe modifications in water soluble proteins, several of these being associated to a specific developmental stage. For this reason, a proteomic approach has been used to describe spatial-temporal proteome modifications in zygotic embryos at different stages of seed development. Embryos from Coffea arabica seeds were harvested in two different developmental stages: stage 1 at 210 days after anthesis and stage 2 at 255 days.
View Article and Find Full Text PDFLaryngeal cancer is a significant disease worldwide, which presents an increasing incidence. Two contrasting ideas of the immune system role during cancer development are accepted: (1) it fights tumor cells, and (2) it aids tumor progression. Thus, there is no clear understanding about the immune response in laryngeal cancer.
View Article and Find Full Text PDFDuring coffee seed development, proteins are predominantly deposited in cotyledons and in the endosperm. Reserve proteins of the 11S family are the most abundant globulins in coffee seeds, acting as a nitrogen source during roasting and guaranteeing flavor and aroma. The aim of the present study was to compare the protein profiles of endosperm and zygotic embryos of coffee seeds.
View Article and Find Full Text PDFBackground: Citrus sudden death (CSD), a disease that rapidly kills orange trees, is an emerging threat to the Brazilian citrus industry. Although the causal agent of CSD has not been definitively determined, based on the disease's distribution and symptomatology it is suspected that the agent may be a new strain of Citrus tristeza virus (CTV). CTV genetic variation was therefore assessed in two Brazilian orange trees displaying CSD symptoms and a third with more conventional CTV symptoms.
View Article and Find Full Text PDF