Publications by authors named "Clarissa Lauditi"

Empirical studies on the landscape of neural networks have shown that low-energy configurations are often found in complex connected structures, where zero-energy paths between pairs of distant solutions can be constructed. Here, we consider the spherical negative perceptron, a prototypical nonconvex neural network model framed as a continuous constraint satisfaction problem. We introduce a general analytical method for computing energy barriers in the simplex with vertex configurations sampled from the equilibrium.

View Article and Find Full Text PDF

Current deep neural networks are highly overparameterized (up to billions of connection weights) and nonlinear. Yet they can fit data almost perfectly through variants of gradient descent algorithms and achieve unexpected levels of prediction accuracy without overfitting. These are formidable results that defy predictions of statistical learning and pose conceptual challenges for nonconvex optimization.

View Article and Find Full Text PDF

The success of deep learning has revealed the application potential of neural networks across the sciences and opened up fundamental theoretical problems. In particular, the fact that learning algorithms based on simple variants of gradient methods are able to find near-optimal minima of highly nonconvex loss functions is an unexpected feature of neural networks. Moreover, such algorithms are able to fit the data even in the presence of noise, and yet they have excellent predictive capabilities.

View Article and Find Full Text PDF