Publications by authors named "Clarisa Marie Bloemhof"

Retinal pigment epithelial (RPE) cells are exclusive to the retina, critically multifunctional in maintaining the visual functions and health of photoreceptors and the retina. Despite their vital functions throughout lifetime, RPE cells lack regenerative capacity, rendering them vulnerable which can lead to degenerative retinal diseases. With advancements in stem cell technology enabling the differentiation of functional cells from pluripotent stem cells and leveraging the robust autocrine and paracrine functions of RPE cells, extracellular vesicles (EVs) secreted by RPE cells hold significant therapeutic potential in supplementing RPE cell activity.

View Article and Find Full Text PDF

Dysfunction of the retinal pigment epithelium (RPE) is a common shared pathology in major degenerative retinal diseases despite variations in the primary etiologies of each disease. Due to their demanding and indispensable functional roles throughout the lifetime, RPE cells are vulnerable to genetic predisposition, external stress, and aging processes. Building upon recent advancements in stem cell technology for differentiating healthy RPE cells and recognizing the significant roles of small extracellular vesicles (sEV) in cellular paracrine and autocrine actions, we investigated the hypothesis that the RPE-secreted sEV alone can restore essential RPE functions and rescue photoreceptors in RPE dysfunction-driven retinal degeneration.

View Article and Find Full Text PDF