Publications by authors named "Clarimon J"

Article Synopsis
  • A novel α-synuclein seed amplification assay (synSAA) was developed to differentiate misfolded α-synuclein seeds linked to multiple system atrophy (MSA) and Parkinson's disease (PD).
  • The study analyzed cerebrospinal fluid (CSF) and brain samples from various clinical cohorts across multiple medical centers to assess the assay's diagnostic accuracy.
  • Findings showed that brain samples with Lewy bodies were positive for synSAA, indicating potential for the assay in distinguishing between MSA and PD in diagnostic settings.
View Article and Find Full Text PDF
Article Synopsis
  • * A study analyzed 4,685 sporadic FTD cases and found significant genetic variants at the MAPT and APOE loci that increase the risk for the disease, indicating potential genetic overlap with other neurodegenerative diseases.
  • * The genetic risk factors appear to vary by population, with MAPT and APOE associations predominantly found in Central/Nordic and Mediterranean Europeans, suggesting a need for further research into these population-specific features for better understanding of sporadic FTD.
View Article and Find Full Text PDF
Article Synopsis
  • Multiple system atrophy (MSA) is a neurodegenerative disease that leads to symptoms like parkinsonism and ataxia, but its genetic causes are not well understood and treatment options are limited to supportive care.
  • A comprehensive study involving the whole genome sequencing of nearly 900 MSA patients and over 7,000 controls discovered four key genetic risk factors associated with the disease.
  • The research identified potential susceptibility genes and provided insights into how genetic variations influence gene expression in brain cells, offering a valuable resource for further studies on similar diseases.
View Article and Find Full Text PDF
Article Synopsis
  • Pathogenic heterozygous mutations in the GRN gene are a significant cause of frontotemporal dementia (FTD), leading to lower levels of the progranulin protein in biofluids, which has sparked therapeutic trials aimed at increasing these levels.
  • A systematic review of literature on biofluid PGRN concentrations included data from 7071 individuals, primarily focusing on plasma PGRN levels derived from a single assay type, which accounted for variations based on mutation type, age, sex, and clinical diagnosis.
  • Key findings established specific concentration cut-offs for plasma (74.8 ng/mL) and CSF (3.43 ng/mL) and indicated that plasma PGRN levels vary by mutation type,
View Article and Find Full Text PDF
Article Synopsis
  • Parkinson's disease (PD) is a brain disorder affecting about 7 million people, with genetics playing a big role in some cases, especially in European people.
  • Most research has been done on people of European descent, leaving a gap in understanding how PD affects other groups.
  • To improve research and create new treatments, scientists have formed a global network of 59 research centers and developed tools like an online map to share information and resources with each other.
View Article and Find Full Text PDF

Background And Purpose: The microtubule-associated protein tau (MAPT) H1 homozygosity (H1/H1 haplotype) is a genetic risk factor for neurodegenerative diseases, such as Parkinson's disease (PD). MAPT H1 homozygosity has been associated with conversion to PD; however, results are conflicting since some studies did not find a strong influence. Cortical hypometabolism is associated with cognitive impairment in PD.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists studied over 176,000 people to see how certain genes might protect against Parkinson's disease (PD) and Alzheimer's disease (AD).
  • They found that specific types of a gene called HLA could help reduce the risk of these diseases and lower harmful proteins in the brain.
  • This suggests that our immune system might help protect us from PD and AD, which could lead to new treatments in the future.
View Article and Find Full Text PDF
Article Synopsis
  • An estimated 40% of dementia cases might be preventable by altering 12 specific risk factors throughout a person's life, although there's insufficient evidence for many of them.
  • The study aims to identify causal relationships between modifiable risk factors for Alzheimer’s disease (AD) to encourage new treatment options and better prevention strategies.
  • Researchers analyzed data from over 39,000 AD patients and 401,000 controls, finding that higher genetically determined levels of HDL cholesterol and systolic blood pressure were linked to an increased risk of developing AD.
View Article and Find Full Text PDF

The study of sex differences in Alzheimer's disease is increasingly recognized as a key priority in research and clinical development. People with Down syndrome represent the largest population with a genetic link to Alzheimer's disease (>90% in the 7th decade). Yet, sex differences in Alzheimer's disease manifestations have not been fully investigated in these individuals, who are key candidates for preventive clinical trials.

View Article and Find Full Text PDF
Article Synopsis
  • - The study aimed to create a global cohort of individuals with Parkinson's disease (PD) linked to specific genetic variants, aiming to improve the understanding and treatment of monogenic PD.
  • - Researchers collected data from 3,888 participants across 92 centers in 42 countries, including 3,185 diagnosed with PD and 703 unaffected individuals, which highlighted a total of 269 distinct pathogenic variants.
  • - This initiative not only established the largest international genetic PD cohort but also provided quality-controlled clinical and genetic data to foster further research collaboration.
View Article and Find Full Text PDF

Alzheimer's disease (AD), the leading cause of dementia, has an estimated heritability of approximately 70%. The genetic component of AD has been mainly assessed using genome-wide association studies, which do not capture the risk contributed by rare variants. Here, we compared the gene-based burden of rare damaging variants in exome sequencing data from 32,558 individuals-16,036 AD cases and 16,522 controls.

View Article and Find Full Text PDF
Article Synopsis
  • Amyloid-beta 42 (Aβ42) and phosphorylated tau (pTau) levels in cerebrospinal fluid (CSF) offer better insight into Alzheimer's disease (AD) than just clinical diagnosis.
  • The European Alzheimer & Dementia Biobank (EADB) analyzed data from 31 cohorts with over 13,000 individuals, identifying new genetic associations such as CR1 for Aβ42 and BIN1 for pTau, alongside novel associations with GMNC and C16orf95.
  • Analysis of all AD risk loci revealed four biological categories linked to Aβ42 and pTau, suggesting multiple pathways in AD's development, with further studies indicating GMNC and C16orf95 also relate to brain ventricular volume.
View Article and Find Full Text PDF

Background: Previous studies suggest a link between CAG repeat number in the HTT gene and non-Huntington neurodegenerative diseases.

Objective: The aim is to analyze whether expanded HTT CAG alleles and/or their size are associated with the risk for developing α-synucleinopathies or their behavior as modulators of the phenotype.

Methods: We genotyped the HTT gene CAG repeat number and APOE-Ɛ isoforms in a case-control series including patients with either clinical or neuropathological diagnosis of α-synucleinopathy.

View Article and Find Full Text PDF

The most frequent genetic cause of frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS) is the hexanucleotide repeat expansion in C9orf72. An important neuropathological hallmark associated with this mutation is the accumulation of the phosphorylated form of TAR (trans-activation response element) DNA-binding protein 43 (pTDP-43). Glia plays a crucial role in the neurodegeneration observed in C9orf72-associated disorders.

View Article and Find Full Text PDF
Article Synopsis
  • The APOE ε2 and ε4 alleles are well-known genetic variants linked to Alzheimer’s Disease (AD), but the specific roles of apoE protein and rare genetic variants in AD risk are not fully understood.
  • The study aims to find connections between rare missense variants in the APOE gene and the risk of developing AD.
  • It involved analyzing a large sample of participants across multiple cohorts, including a significant number with and without AD, to assess the relationship between these variants and AD risk through established statistical methods.
View Article and Find Full Text PDF

Two genetic variants in strong linkage disequilibrium (rs9536314 and rs9527025) in the Klotho (KL) gene, encoding a transmembrane protein, implicated in longevity and associated with brain resilience during normal aging, were recently shown to be associated with Alzheimer disease (AD) risk in cognitively normal participants who are APOE ε4 carriers. Specifically, the participants heterozygous for this variant (KL-SVHET+) showed lower risk of developing AD. Furthermore, a neuroprotective effect of KL-VSHET+ has been suggested against amyloid burden for cognitively normal participants, potentially mediated via the regulation of redox pathways.

View Article and Find Full Text PDF

Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis.

View Article and Find Full Text PDF

Background: Astrocytes play an essential role in neuroinflammation and are involved in the pathogenesis of neurodenegerative diseases. Studies of glial fibrillary acidic protein (GFAP), an astrocytic damage marker, may help advance our understanding of different neurodegenerative diseases. In this study, we investigated the diagnostic performance of plasma GFAP (pGFAP), plasma neurofilament light chain (pNfL) and their combination for frontotemporal dementia (FTD) and Alzheimer's disease (AD) and their clinical utility in predicting disease progression.

View Article and Find Full Text PDF

We report the neuropathological examination of a patient with Alzheimer's disease (AD) treated for 38 months with low doses of the BACE-1 inhibitor verubecestat. Brain examination showed small plaque size, reduced dystrophic neurites around plaques and reduced synaptic-associated Aβ compared with a group of age-matched untreated sporadic AD (SAD) cases. Our findings suggest that BACE-1 inhibition has an impact on synaptic soluble Aβ accumulation and neuritic derangement in AD.

View Article and Find Full Text PDF

Plasma tau phosphorylated at threonine 181 (p-tau181) predicts Alzheimer's disease (AD) pathology with high accuracy in the general population. In this study, we investigated plasma p-tau181 as a biomarker of AD in individuals with Down syndrome (DS). We included 366 adults with DS (240 asymptomatic, 43 prodromal AD, 83 AD dementia) and 44 euploid cognitively normal controls.

View Article and Find Full Text PDF

Importance: Alzheimer disease (AD) is the leading cause of death in individuals with Down syndrome (DS). Previous studies have suggested that the APOE ɛ4 allele plays a role in the risk and age at onset of dementia in DS; however, data on in vivo biomarkers remain scarce.

Objective: To investigate the association of the APOE ɛ4 allele with clinical and multimodal biomarkers of AD in adults with DS.

View Article and Find Full Text PDF

Background: There is an urgent need for objective markers of Alzheimer's disease (AD)-related cognitive impairment in people with Down syndrome (DS) to improve diagnosis, monitor disease progression, and assess response to disease-modifying therapies. Previously, GluA4 and neuronal pentraxin 2 (NPTX2) showed limited potential as cerebrospinal fluid (CSF) markers of cognitive impairment in adults with DS. Here, we compare the CSF profile of a panel of synaptic proteins (Calsyntenin-1, Neuroligin-2, Neurexin-2A, Neurexin-3A, Syntaxin-1B, Thy-1, VAMP-2) to that of NPTX2 and GluA4 in a large cohort of subjects with DS across the preclinical and clinical AD continuum and explore their correlation with cognitive impairment.

View Article and Find Full Text PDF

Objectives: All categories included in the AT(N) classification can now be measured in plasma. However, their agreement with cerebrospinal fluid (CSF) markers is not fully established. A blood signature to generate the AT(N) classification would facilitate early diagnosis of patients with Alzheimer's disease (AD) through an easy and minimally invasive approach.

View Article and Find Full Text PDF