Background And Purpose: The microtubule-associated protein tau (MAPT) H1 homozygosity (H1/H1 haplotype) is a genetic risk factor for neurodegenerative diseases, such as Parkinson's disease (PD). MAPT H1 homozygosity has been associated with conversion to PD; however, results are conflicting since some studies did not find a strong influence. Cortical hypometabolism is associated with cognitive impairment in PD.
View Article and Find Full Text PDFThe study of sex differences in Alzheimer's disease is increasingly recognized as a key priority in research and clinical development. People with Down syndrome represent the largest population with a genetic link to Alzheimer's disease (>90% in the 7th decade). Yet, sex differences in Alzheimer's disease manifestations have not been fully investigated in these individuals, who are key candidates for preventive clinical trials.
View Article and Find Full Text PDFAlzheimer's disease (AD), the leading cause of dementia, has an estimated heritability of approximately 70%. The genetic component of AD has been mainly assessed using genome-wide association studies, which do not capture the risk contributed by rare variants. Here, we compared the gene-based burden of rare damaging variants in exome sequencing data from 32,558 individuals-16,036 AD cases and 16,522 controls.
View Article and Find Full Text PDFBackground: Previous studies suggest a link between CAG repeat number in the HTT gene and non-Huntington neurodegenerative diseases.
Objective: The aim is to analyze whether expanded HTT CAG alleles and/or their size are associated with the risk for developing α-synucleinopathies or their behavior as modulators of the phenotype.
Methods: We genotyped the HTT gene CAG repeat number and APOE-Ɛ isoforms in a case-control series including patients with either clinical or neuropathological diagnosis of α-synucleinopathy.
The most frequent genetic cause of frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS) is the hexanucleotide repeat expansion in C9orf72. An important neuropathological hallmark associated with this mutation is the accumulation of the phosphorylated form of TAR (trans-activation response element) DNA-binding protein 43 (pTDP-43). Glia plays a crucial role in the neurodegeneration observed in C9orf72-associated disorders.
View Article and Find Full Text PDFTwo genetic variants in strong linkage disequilibrium (rs9536314 and rs9527025) in the Klotho (KL) gene, encoding a transmembrane protein, implicated in longevity and associated with brain resilience during normal aging, were recently shown to be associated with Alzheimer disease (AD) risk in cognitively normal participants who are APOE ε4 carriers. Specifically, the participants heterozygous for this variant (KL-SVHET+) showed lower risk of developing AD. Furthermore, a neuroprotective effect of KL-VSHET+ has been suggested against amyloid burden for cognitively normal participants, potentially mediated via the regulation of redox pathways.
View Article and Find Full Text PDFCharacterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis.
View Article and Find Full Text PDFBackground: Astrocytes play an essential role in neuroinflammation and are involved in the pathogenesis of neurodenegerative diseases. Studies of glial fibrillary acidic protein (GFAP), an astrocytic damage marker, may help advance our understanding of different neurodegenerative diseases. In this study, we investigated the diagnostic performance of plasma GFAP (pGFAP), plasma neurofilament light chain (pNfL) and their combination for frontotemporal dementia (FTD) and Alzheimer's disease (AD) and their clinical utility in predicting disease progression.
View Article and Find Full Text PDFWe report the neuropathological examination of a patient with Alzheimer's disease (AD) treated for 38 months with low doses of the BACE-1 inhibitor verubecestat. Brain examination showed small plaque size, reduced dystrophic neurites around plaques and reduced synaptic-associated Aβ compared with a group of age-matched untreated sporadic AD (SAD) cases. Our findings suggest that BACE-1 inhibition has an impact on synaptic soluble Aβ accumulation and neuritic derangement in AD.
View Article and Find Full Text PDFPlasma tau phosphorylated at threonine 181 (p-tau181) predicts Alzheimer's disease (AD) pathology with high accuracy in the general population. In this study, we investigated plasma p-tau181 as a biomarker of AD in individuals with Down syndrome (DS). We included 366 adults with DS (240 asymptomatic, 43 prodromal AD, 83 AD dementia) and 44 euploid cognitively normal controls.
View Article and Find Full Text PDFImportance: Alzheimer disease (AD) is the leading cause of death in individuals with Down syndrome (DS). Previous studies have suggested that the APOE ɛ4 allele plays a role in the risk and age at onset of dementia in DS; however, data on in vivo biomarkers remain scarce.
Objective: To investigate the association of the APOE ɛ4 allele with clinical and multimodal biomarkers of AD in adults with DS.
Background: There is an urgent need for objective markers of Alzheimer's disease (AD)-related cognitive impairment in people with Down syndrome (DS) to improve diagnosis, monitor disease progression, and assess response to disease-modifying therapies. Previously, GluA4 and neuronal pentraxin 2 (NPTX2) showed limited potential as cerebrospinal fluid (CSF) markers of cognitive impairment in adults with DS. Here, we compare the CSF profile of a panel of synaptic proteins (Calsyntenin-1, Neuroligin-2, Neurexin-2A, Neurexin-3A, Syntaxin-1B, Thy-1, VAMP-2) to that of NPTX2 and GluA4 in a large cohort of subjects with DS across the preclinical and clinical AD continuum and explore their correlation with cognitive impairment.
View Article and Find Full Text PDFJ Neurol Neurosurg Psychiatry
November 2021
Objectives: All categories included in the AT(N) classification can now be measured in plasma. However, their agreement with cerebrospinal fluid (CSF) markers is not fully established. A blood signature to generate the AT(N) classification would facilitate early diagnosis of patients with Alzheimer's disease (AD) through an easy and minimally invasive approach.
View Article and Find Full Text PDF