The chemical industry is a major and growing source of CO emissions. Here, we extend the principal U.S.
View Article and Find Full Text PDFAs efforts to control climate change gain momentum, so too does the possibility that some global actor(s) will deploy one or more forms of climate engineering. Climate engineering refers to large-scale and deliberate activities intended to change either the carbon-balance or energy-balance of the planet. Climate engineering approaches are untested, involve deep uncertainty, and have far-reaching consequences.
View Article and Find Full Text PDFEfforts to develop safe and effective next-generation energy and carbon-storage technologies in the subsurface require novel means to control undesired fluid migration. Here we demonstrate that the carbonation of calcium silicates can produce reaction products that dramatically reduce the permeability of porous media and that are stable. Most calcium silicates react with CO to form solid carbonates but some polymorphs (here, pseudowollastonite, CaSiO) can react to form a range of crystalline calcium silicate hydrates (CCSHs) at intermediate pH.
View Article and Find Full Text PDFMultiphase flow through porous media is important in a wide range of environmental applications such as enhanced oil recovery and geologic storage of CO. Recent in situ observations of the three-phase contact line between immiscible fluid phases and solid surfaces suggest that existing models may not fully capture the effects of nanoscale surface textures, impacting flow prediction. To better characterize the role of surface roughness in these systems, spontaneous and forced imbibition experiments were carried out using glass capillaries with modified surface roughness or wettability.
View Article and Find Full Text PDFBackground: Pharmacists have contributed to improved population health through the delivery of public health services, but their contributions often go unrecognized within the larger health care system.
Objectives: To determine pharmacist perceptions of their contributions to the 10 essential services of public health and to compare those contributions among pharmacists in Iowa, North Dakota, and Manitoba.
Methods: Licensed pharmacists in Iowa, North Dakota, and Manitoba were sent an online survey of their perceived level of achievement of the 10 essential services of public health.
Background: The profession of pharmacy is expanding its involvement in public health, but few studies have examined pharmacists' delivery of public health services.
Objective: To assess Iowa and North Dakota pharmacists' practices, frequency of public health service delivery, level of involvement in achieving the essential services of public health, and barriers to expansion of public health services in rural and urban areas.
Methods: This study implemented an on-line survey sent to all pharmacists currently practicing pharmacy in Iowa and North Dakota.
Environmental engineers have played a critical role in improving human and ecosystem health over the past several decades. These contributions have focused on providing clean water and air as well as managing waste streams and remediating polluted sites. As environmental problems have become more global in scale and more deeply entrenched in sociotechnical systems, the discipline of environmental engineering must grow to be ready to respond to the challenges of the coming decades.
View Article and Find Full Text PDFMany of the environmental impacts associated with hydraulic fracturing of unconventional gas wells are tied to the large volumes of water that such operations require. Efforts to develop nonaqueous alternatives have focused on carbon dioxide as a tunable working fluid even though the full environmental and production impacts of a switch away from water have yet to be quantified. Here we report on a life cycle analysis of using either water or CO for gas production in the Marcellus shale.
View Article and Find Full Text PDFEfforts to mitigate the impacts of climate change will require deep reductions in anthropogenic CO2 emissions on the scale of gigatonnes per year. CO2 capture and utilization and/or storage technologies are a class of approaches that can substantially reduce CO2 emissions. Even though examples of this approach, such as CO2-enhanced oil recovery, are already being practiced on a scale >0.
View Article and Find Full Text PDFLife cycle assessment (LCA) has been used widely to estimate the environmental implications of deploying algae-to-energy systems even though no full-scale facilities have yet to be built. Here, data from a pilot-scale facility using hydrothermal liquefaction (HTL) is used to estimate the life cycle profiles at full scale. Three scenarios (lab-, pilot-, and full-scale) were defined to understand how development in the industry could impact its life cycle burdens.
View Article and Find Full Text PDFHydrated mineral surfaces in the environment are generally hydrophilic but in certain cases can strongly adhere CO2, which is largely nonpolar. This adhesion can significantly alter the wettability characteristics of the mineral surface and consequently influence capillary/residual trapping and other multiphase flow processes in porous media. Here, the conditions influencing adhesion between CO2 and homogeneous mineral surfaces were studied using static pendant contact angle measurements and captive advancing/receding tests.
View Article and Find Full Text PDFEnviron Sci Technol
October 2013
Hydraulically fractured shale formations are being developed widely for oil and gas production. They could also represent an attractive repository for permanent geologic carbon sequestration. Shales have a low permeability, but they can adsorb an appreciable amount of CO2 on fracture surfaces.
View Article and Find Full Text PDFAlgae are an attractive energy source, but important questions still exist about the sustainability of this technology on a large scale. Two particularly important questions concern the method of cultivation and the type of algae to be used. This present study combines elements of life cycle analysis (LCA) and life cycle costing (LCC) to evaluate open pond (OP) systems and horizontal tubular photobioreactors (PBRs) for the cultivation of freshwater (FW) or brackish-to-saline water (BSW) algae.
View Article and Find Full Text PDFGeologic carbon sequestration (GCS) in deep saline aquifers results in chemical and transport processes that are impacted by the wettability characteristics of formation solid phases in contact with connate brines and injected CO(2). Here, the contact angle (θ) at the CO(2)-brine-mineral interface is studied for several representative solids including quartz, microcline, calcite, kaolinite, phlogopite, and illite under a range of GCS conditions. All were found to be water wetting (θ < 30°) with subtle but important differences in contact angles observed between the surfaces.
View Article and Find Full Text PDFA meta-analysis of several published life cycle assessments of algae-to-energy systems was developed to better understand the environmental implications of deploying this technology at large scales. Taken together, results from these six studies seemed largely inconclusive because of differences in modeling assumptions and system boundaries. To overcome this, the models were normalized using a generic pathway for cultivating algae in open ponds, converting it into biodiesel, and processing the nonlipid fraction using anaerobic digestion.
View Article and Find Full Text PDFAlgae are a widely touted source of bioenergy with high yields, appreciable lipid contents, and an ability to be cultivated on marginal land without directly competing with food crops. Nevertheless, recent work has suggested that large-scale deployment of algae bioenergy systems could have unexpectedly high environmental burdens. In this study, a "well-to-wheel" life cycle assessment was undertaken to evaluate algae's potential use as a transportation energy source for passenger vehicles.
View Article and Find Full Text PDFAlgae are an attractive source of biomass energy since they do not compete with food crops and have higher energy yields per area than terrestrial crops. In spite of these advantages, algae cultivation has not yet been compared with conventional crops from a life cycle perspective. In this work, the impacts associated with algae production were determined using a stochastic life cycle model and compared with switchgrass, canola, and corn farming.
View Article and Find Full Text PDFA number of environmentally adapted lubricants have been proposed in response to the environmental and health impacts of metalworking fluids (MWFs). The alternatives typically substitute petroleum with vegetable-based components and/or deliver minimum quantities of lubricant in gas rather than water, with the former strategy being more prevalent than the latter. A comparative life cycle assessment of water- and gas-based systems has shown that delivery of lubricants in air rather than water can reduce solid waste by 60%, water use by 90%, and aquatic toxicity by 80%, while virtually eliminating occupational health concerns.
View Article and Find Full Text PDFEnviron Sci Technol
February 2007
Microfiltration can be used as a recycling technology to increase metalworking fluid (MWF) life span, decrease procurement and disposal costs, and reduce occupational health risks and environmental impacts. The cost-effectiveness of the process can be increased by minimizing fouling interactions between MWFs and membranes. This paper reports on the development of a microfiltration model that establishes governing relationships between MWF surfactant system characteristics and microfiltration recycling performance.
View Article and Find Full Text PDFThis paper presents a set of surfactant-selection guidelines that can be used to design bio-based semi-synthetic metalworking fluid (MWF) microemulsions as a renewable alternative to conventional petroleum formulations. Ten surfactant classes (six anionic and four nonionic) with different head and tail structures and three vegetable base oils (canola oil, soybean oil, and a fatty acid trimethylolpropane ester) were investigated as representatives of oil and surfactant options currently under consideration in the MWF industry. All combinations of these surfactants and oils were formulated at the full range of oil to surfactant ratios and surfactant concentrations.
View Article and Find Full Text PDFMetalworking fluids (MWFs) increase productivity and the quality of manufacturing operations by cooling and lubricating during metal forming and cutting processes. Despite their widespread use, they pose significant health and environmental hazards throughout their life cycle. An obvious environmental improvement to MWF technology would be to improve the lifetime of the fluid while utilizing more environmentally friendly and less energy-consuming materials without compromising existing performance levels.
View Article and Find Full Text PDF