Phosphorylation is a universal mechanism for regulating cell behavior in eukaryotes. Although protein kinases target short linear sequence motifs on their substrates, the rules for kinase substrate recognition are not completely understood. We used a rapid peptide screening approach to determine consensus phosphorylation site motifs targeted by 61 of the 122 kinases in Saccharomyces cerevisiae.
View Article and Find Full Text PDFThe Sli15-Ipl1-Bir1 chromosomal passenger complex is essential for proper kinetochore-microtubule attachment and spindle stability in the budding yeast Saccharomyces cerevisiae. During early anaphase, release of the Cdc14 protein phosphatase from the nucleolus leads to the dephosphorylation of Sli15 and redistribution of this complex from kinetochores to the spindle. We show here that the predominantly nucleolar ribosome biogenesis protein Utp7 is also present at kinetochores and is required for normal organization of kinetochore proteins and proper chromosome segregation.
View Article and Find Full Text PDFThe outer kinetochore binds microtubules to control chromosome movement. Outer kinetochore assembly is restricted to mitosis, whereas the inner kinetochore remains tethered to centromeres throughout the cell cycle. The cues that regulate this transient assembly are unknown.
View Article and Find Full Text PDFThe mitotic spindle consists of a complex network of proteins that segregates chromosomes in eukaryotes. To strengthen our understanding of the molecular composition, organization, and regulation of the mitotic spindle, we performed a system-wide two-hybrid screen on 94 proteins implicated in spindle function in Saccharomyces cerevisiae. We report 604 predominantly novel interactions that were detected in multiple screens, involving 303 distinct prey proteins.
View Article and Find Full Text PDFMinichromosome maintenance protein 1 (Mcm1) is required for efficient replication of autonomously replicating sequence (ARS)-containing plasmids in yeast cells. Reduced DNA binding activity in the Mcm1-1 mutant protein (P97L) results in selective initiation of a subset of replication origins and causes instability of ARS-containing plasmids. This plasmid instability in the mcm1-1 mutant can be overcome for a subset of ARSs by the inclusion of flanking sequences.
View Article and Find Full Text PDFEndocytosis is a dynamic process requiring a network of interacting proteins that assemble and disassemble during cargo capture and vesicle formation. A major mechanism for regulation of this process involves the reversible phosphorylation of endocytic factors. Recently, members of a new kinase family, the Ark/Prk kinases, which include mammalian AAK1 and GAK as well as yeast Prk1p, Ark1p, and Akl1p, were shown to regulate components of the endocytic machinery.
View Article and Find Full Text PDFThe Aurora kinase Ipl1p plays a crucial role in regulating kinetochore-microtubule attachments in budding yeast, but the underlying basis for this regulation is not known. To identify Ipl1p targets, we first purified 28 kinetochore proteins from yeast protein extracts. These studies identified five previously uncharacterized kinetochore proteins and defined two additional kinetochore subcomplexes.
View Article and Find Full Text PDFThe yeast 2 micron plasmid achieves high fidelity segregation by coupling its partitioning pathway to that of the chromosomes. Mutations affecting distinct steps of chromosome segregation cause the plasmid to missegregate in tandem with the chromosomes. In the absence of the plasmid stability system, consisting of the Rep1 and Rep2 proteins and the STB DNA, plasmid and chromosome segregations are uncoupled.
View Article and Find Full Text PDF