Whole-genome and whole-exome sequencing of individual patients allow the study of rare and potentially causative genetic variation. In this study, we sequenced DNA of a trio comprising a boy with very-early-onset inflammatory bowel disease (veoIBD) and his unaffected parents. We identified a rare, X-linked missense variant in the NAPDH oxidase gene (c.
View Article and Find Full Text PDFJ Clin Hypertens (Greenwich)
February 2017
Methodological quality of meta-analyses on hypertension treatments can affect treatment decision-making. The authors conducted a cross-sectional study to investigate the methodological quality of meta-analyses on hypertension treatments. One hundred and fifty-eight meta-analyses were identified.
View Article and Find Full Text PDFThe mangrove rivulus (Kryptolebias marmoratus) is one of two preferentially self-fertilizing hermaphroditic vertebrates. This mode of reproduction makes mangrove rivulus an important model for evolutionary and biomedical studies because long periods of self-fertilization result in naturally homozygous genotypes that can produce isogenic lineages without significant limitations associated with inbreeding depression. Over 400 isogenic lineages currently held in laboratories across the globe show considerable among-lineage variation in physiology, behavior, and life history traits that is maintained under common garden conditions.
View Article and Find Full Text PDFObjective: Breath testing and duodenal culture studies suggest that a significant proportion of irritable bowel syndrome (IBS) patients have small intestinal bacterial overgrowth. In this study, we extended these data through 16S rDNA amplicon sequencing and quantitative PCR (qPCR) analyses of duodenal aspirates from a large cohort of IBS, non-IBS and control subjects.
Materials And Methods: Consecutive subjects presenting for esophagogastroduodenoscopy only and healthy controls were recruited.
Spatial and temporal dissection of the genomic changes occurring during the evolution of human non-small cell lung cancer (NSCLC) may help elucidate the basis for its dismal prognosis. We sequenced 25 spatially distinct regions from seven operable NSCLCs and found evidence of branched evolution, with driver mutations arising before and after subclonal diversification. There was pronounced intratumor heterogeneity in copy number alterations, translocations, and mutations associated with APOBEC cytidine deaminase activity.
View Article and Find Full Text PDFGenomics and metagenomics have revolutionized our understanding of marine microbial ecology and the importance of microbes in global geochemical cycles. However, the process of DNA sequencing has always been an abstract extension of the research expedition, completed once the samples were returned to the laboratory. During the 2013 Southern Line Islands Research Expedition, we started the first effort to bring next generation sequencing to some of the most remote locations on our planet.
View Article and Find Full Text PDFThe development of noninvasive methods to detect and monitor tumors continues to be a major challenge in oncology. We used digital polymerase chain reaction-based technologies to evaluate the ability of circulating tumor DNA (ctDNA) to detect tumors in 640 patients with various cancer types. We found that ctDNA was detectable in >75% of patients with advanced pancreatic, ovarian, colorectal, bladder, gastroesophageal, breast, melanoma, hepatocellular, and head and neck cancers, but in less than 50% of primary brain, renal, prostate, or thyroid cancers.
View Article and Find Full Text PDFIntra-tumor heterogeneity is a hallmark of many cancers and may lead to therapy resistance or interfere with personalized treatment strategies. Here, we combined topographic mapping of somatic breakpoints and transcriptional profiling to probe intra-tumor heterogeneity of treatment-naïve stage IIIC/IV epithelial ovarian cancer. We observed that most substantial differences in genomic rearrangement landscapes occurred between metastases in the omentum and peritoneum versus tumor sites in the ovaries.
View Article and Find Full Text PDFCurrent efforts to understand antibiotic resistance on the whole genome scale tend to focus on known genes even as high throughput sequencing strategies uncover novel mechanisms. To identify genomic variations associated with antibiotic resistance, we employed a modified genome-wide association study; we sequenced genomic DNA from pools of E. coli clinical isolates with similar antibiotic resistance phenotypes using SOLiD technology to uncover single nucleotide polymorphisms (SNPs) unanimously conserved in each pool.
View Article and Find Full Text PDFBackground: Cystic fibrosis is a life-threatening genetic disorder that has been associated with mutations in the CFTR [cystic fibrosis transmembrane conductance regulator (ATP-binding cassette sub-family C, member 7)] gene. Hundreds of CFTR mutations have been detected to date. Current CFTR genotyping assays target a subset of these mutations, particularly a mutation panel recommended by the American College of Medical Genetics for carrier screening of the general population.
View Article and Find Full Text PDFClassifying individual bacterial species comprising complex, polymicrobial patient specimens remains a challenge for culture-based and molecular microbiology techniques in common clinical use. We therefore adapted practices from metagenomics research to rapidly catalog the bacterial composition of clinical specimens directly from patients, without need for prior culture. We have combined a semiconductor deep sequencing protocol that produces reads spanning 16S ribosomal RNA gene variable regions 1 and 2 (∼360 bp) with a de-noising pipeline that significantly improves the fraction of error-free sequences.
View Article and Find Full Text PDFBackground: Paired-tag sequencing approaches are commonly used for the analysis of genome structure. However, mammalian genomes have a complex organization with a variety of repetitive elements that complicate comprehensive genome-wide analyses.
Results: Here, we systematically assessed the utility of paired-end and mate-pair (MP) next-generation sequencing libraries with insert sizes ranging from 170 bp to 25 kb, for genome coverage and for improving scaffolding of a mammalian genome (Rattus norvegicus).
Of 7028 disorders with suspected Mendelian inheritance, 1139 are recessive and have an established molecular basis. Although individually uncommon, Mendelian diseases collectively account for ~20% of infant mortality and ~10% of pediatric hospitalizations. Preconception screening, together with genetic counseling of carriers, has resulted in remarkable declines in the incidence of several severe recessive diseases including Tay-Sachs disease and cystic fibrosis.
View Article and Find Full Text PDFIdentifying genetic variants and mutations that underlie human diseases requires development of robust, cost-effective tools for routine resequencing of regions of interest in the human genome. Here, we demonstrate that coupling Applied Biosystems SOLiD system-sequencing platform with microarray capture of targeted regions provides an efficient and robust method for high-coverage resequencing and polymorphism discovery in human protein-coding exons.
View Article and Find Full Text PDFGenome Res
September 2009
We describe the genome sequencing of an anonymous individual of African origin using a novel ligation-based sequencing assay that enables a unique form of error correction that improves the raw accuracy of the aligned reads to >99.9%, allowing us to accurately call SNPs with as few as two reads per allele. We collected several billion mate-paired reads yielding approximately 18x haploid coverage of aligned sequence and close to 300x clone coverage.
View Article and Find Full Text PDFMassively parallel, tag-based sequencing systems, such as the SOLiD system, hold the promise of revolutionizing the study of whole genome gene expression due to the number of data points that can be generated in a simple and cost-effective manner. We describe the development of a 5'-end transcriptome workflow for the SOLiD system and demonstrate the advantages in sensitivity and dynamic range offered by this tag-based application over traditional approaches for the study of whole genome gene expression. 5'-end transcriptome analysis was used to study whole genome gene expression within a colon cancer cell line, HT-29, treated with the DNA methyltransferase inhibitor, 5-aza-2'-deoxycytidine (5Aza).
View Article and Find Full Text PDFForward genetic mutational studies, adaptive evolution, and phenotypic screening are powerful tools for creating new variant organisms with desirable traits. However, mutations generated in the process cannot be easily identified with traditional genetic tools. We show that new high-throughput, massively parallel sequencing technologies can completely and accurately characterize a mutant genome relative to a previously sequenced parental (reference) strain.
View Article and Find Full Text PDFWe developed a massive-scale RNA sequencing protocol, short quantitative random RNA libraries or SQRL, to survey the complexity, dynamics and sequence content of transcriptomes in a near-complete fashion. This method generates directional, random-primed, linear cDNA libraries that are optimized for next-generation short-tag sequencing. We surveyed the poly(A)(+) transcriptomes of undifferentiated mouse embryonic stem cells (ESCs) and embryoid bodies (EBs) at an unprecedented depth (10 Gb), using the Applied Biosystems SOLiD technology.
View Article and Find Full Text PDFNucleic Acids Res
January 2007
DNA hairpins produce ionic current signatures when captured by the alpha-hemolysin nano-scale pore under conditions of single molecule electrophoresis. Gating patterns produced by individual DNA hairpins when captured can be used to distinguish differences of a single base pair or even a single nucleotide [Vercoutere,W.A.
View Article and Find Full Text PDFWe have systematically investigated the effect of aggregation of a transmembrane peptide on its diffusion in dimyristoylphosphatidylcholine and in palmitoyloleoylphosphatidylcholine model membranes. The hydrophobic segment of the b subunit from E. coli F(1)F(0)-ATP synthase was modified with a histidine tag at the carbonyl terminus and was aggregated selectively by using a series of multivalent, dendritic chelating agents with nitrilotriacetic acid functional groups.
View Article and Find Full Text PDF