Publications by authors named "Clare Trinder"

When plants compete what influences that interaction? To answer this we measured belowground competition directly, as the simultaneous capture of soil ammonium and nitrate by co-existing herbaceous perennials, Dactylis glomerata and Plantago lanceolata, under the influence of: species identity; N uptake and biomass of focal and neighbour plants; location (benign lowland versus harsher upland site); N availability (low or high N fertilizer); N ion, ammonium or nitrate production (mineralisation) rate, and competition type (intra- or interspecific), as direct effects or pairwise interactions in linear models. We also measured biomass as an indirect proxy for competition. Only three factors influenced both competitive N uptake and biomass production: focal species identity, N ion and the interaction between N ion and neighbour N uptake.

View Article and Find Full Text PDF

Understanding the effects of global change in terrestrial communities requires an understanding of how limiting resources interact with plant traits to affect productivity. Here, we focus on nitrogen and ask whether plant community nitrogen uptake rate is determined (a) by nitrogen availability alone or (b) by the product of nitrogen availability and fine-root mass. Surprisingly, this is not empirically resolved.

View Article and Find Full Text PDF

Nitrogen deposition has been shown to have significant impacts on a range of vegetation types resulting in eutrophication and species compositional change. Data from a re-survey of 89 coastal sites in Scotland, UK, c. 34 years after the initial survey were examined to assess the degree of change in species composition that could be accounted for by nitrogen deposition.

View Article and Find Full Text PDF

Climate change is expected to have an impact on plant communities as increased temperatures are expected to drive individual species' distributions polewards. The results of a revisitation study after c. 34 years of 89 coastal sites in Scotland, UK, were examined to assess the degree of shifts in species composition that could be accounted for by climate change.

View Article and Find Full Text PDF

Although rarely acknowledged, our understanding of how competition is modulated by environmental drivers is severely hampered by our dependence on indirect measurements of outcomes, rather than the process of competition. To overcome this, we made direct measurements of plant competition for soil nitrogen (N). Using isotope pool-dilution, we examined the interactive effects of soil resource limitation and climatic severity between two common grassland species.

View Article and Find Full Text PDF

Although dynamic, plant competition is usually estimated as biomass differences at a single, arbitrary time; resource capture is rarely measured. This restricted approach perpetuates uncertainty. To address this problem, we characterized the competitive dynamics of Dactylis glomerata and Plantago lanceolata as continuous trajectories of biomass production and nitrogen (N) capture.

View Article and Find Full Text PDF

Background And Aims: Plant competition studies are restricted by the difficulty of quantifying root systems of competitors. Analyses are usually limited to above-ground traits. Here, a new approach to address this issue is reported.

View Article and Find Full Text PDF

Peatlands are important reservoirs of carbon (C) but our understanding of C cycling on cutover peatlands is limited. We investigated the decomposition over 18 months of five types of plant litter (Calluna vulgaris, Eriophorum angustifolium, Eriophorum vaginatum, Picea sitchensis and Sphagnum auriculatum) at a cutover peatland in Scotland, at three water tables. We measured changes in C, nitrogen (N) and phosphorus (P) in the litter and used denaturing gradient gel electrophoresis to investigate changes in fungal community composition.

View Article and Find Full Text PDF