Publications by authors named "Clare T Muller"

Cyanobacterial harmful algal blooms (cHABs) are increasing due to eutrophication and climate change, as is irrigation of crops with freshwater contaminated with cHAB toxins. A few studies, mostly in aquatic protists and plants, have investigated the effects of cHAB toxins or cell extracts on various aspects of photosynthesis, with variable effects reported (negative to neutral to positive). We examined the effects of cyanobacterial live cultures and cell extracts ( or ) and individual cHAB toxins (anatoxin-a, ANA; beta-methyl-amino-L-alanine, BMAA; lipopolysaccharide, LPS; microcystin-LR, MC-LR) on photosynthesis in intact plants and leaf pieces in corn () and lettuce ().

View Article and Find Full Text PDF

Background And Aims: Soil endemics have long fascinated botanists due to the insights they can provide about plant ecology and evolution. Often, these species have unique foliar nutrient composition patterns that reflect potential physiological adaptations to these harsh soil types. However, understanding global nutritional patterns to unique soil types can be complicated by the influence of recent and ancient evolutionary events.

View Article and Find Full Text PDF

Premise Of The Study: Gypsum endemism in plants (gypsophily) is common on gypsum outcrops worldwide, but little is known about the functional ecology of Chihuahuan Desert gypsophiles. We investigated whether leaf chemistry of gypsophile lineages from the northern Chihuahuan Desert are similar to leaves of related nonendemic (gypsovag) species relative to their soil chemistry. We expected widely distributed gypsophiles (hypothesized to be older lineages on gypsum) would have distinct leaf chemistry from narrowly distributed, relatively younger lineages endemic to gypsum and gypsovags, reflecting adaptation to gypsum.

View Article and Find Full Text PDF