We have previously discovered an amine-containing flavonoid monomer as a potent P-glycoprotein (P-gp) inhibitor (EC = 83 nM). Here, a series of photoactive analogues were synthesized and used together with liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify the -binding sites on P-gp. Point mutations around the photo-crosslinked sites were made for verification.
View Article and Find Full Text PDFBiotransformation of flavonoid dimer FD18 resulted in an active metabolite FM04. It was more druggable because of its improved physicochemical properties. FM04 (EC50 = 83 nM) was 1.
View Article and Find Full Text PDFOverexpression of breast cancer resistance transporter (BCRP/ABCG2) in cancers has been explained for the failure of chemotherapy in clinic. Inhibition of the transport activity of BCRP during chemotherapy should reverse multidrug resistance. In this study, a triazole-bridged flavonoid dimer was identified as a potent, nontoxic, and selective BCRP inhibitor.
View Article and Find Full Text PDFFlavonoid dimer FD18 is a new class of dimeric P-gp modulator that can reverse cancer drug resistance. FD18 is a potent (EC50 = 148 nM for paclitaxel), safe (selective index = 574), and selective P-glycoprotein (P-gp) modulator. FD18 can modulate multidrug resistance toward paclitaxel, vinblastine, vincristine, doxorubicin, daunorubicin, and mitoxantrone in human breast cancer LCC6MDR in vitro.
View Article and Find Full Text PDFHere we report a great improvement in reversal potency of cancer drug resistance when flavonoid dimers possess a functionally substituted aminopolyethylene glycol linker. The most potent compound, 18, contains a N-benzyl group at the linker. It has many advantages including (1) high potencies in reversing P-glycoprotein (P-gp) mediated resistance in LCC6MDR cells to various anticancer drugs with EC(50) in the nanomolar range, (2) low toxicity and high therapeutic index, and (3) preferential inhibition of P-gp over multidrug resistance protein 1 and breast cancer resistance protein.
View Article and Find Full Text PDFA series of novel N-arylalkyl-3,4-diaryl-substituted pyrrole-2,5-diones were synthesized. They exhibited promising P-gp modulating activity in a P-gp overexpressing breast cancer cell line (LCC6MDR). Compound 6 (with three methoxy groups at D-ring) displayed the highest P-gp modulating activity.
View Article and Find Full Text PDFWe recently described the modulatory activities of apigenin homodimers linked by ethylene glycol units in multidrug- resistant breast cancer and leukemic cells overexpressing ABCB1 (P-glycoprotein, P-gp). To further improve the potency of these dimers, a small library of flavonoid homodimers and heterodimers were synthesized, and their in vitro activity in reversing cellular resistance to paclitaxel, along with structure-activity relationships (SAR), were evaluated using a P-gp-expressing human breast cancer cell line. Among these synthesized homodimers, many showed more potent reversing activity than that of the parent compound and verapamil.
View Article and Find Full Text PDF