Background: The ATP-sensitive P2X7 receptor (P2X7R) has been shown to contribute to renal injury in nephrotoxic nephritis, a rodent model of acute glomerulonephritis, and in unilateral ureteric obstruction (UUO), a rodent model of chronic interstitial inflammation and fibrosis. Renal tubular cells, endothelial cells and macrophages also express the closely related P2X4 receptor (P2X4R), which is chromosomally co-located with P2X7R and has 40% homology; it is also pro-inflammatory and has been shown to interact with P2X7R to modulate its pro-apoptotic and pro-inflammatory effects. Therefore, we chose to explore the function of P2X4R in the UUO model of renal injury using knockout mice.
View Article and Find Full Text PDFThe inflammasome is a large, multiprotein complex that drives proinflammatory cytokine production in response to infection and tissue injury. Pattern recognition receptors that are either membrane bound or cytoplasmic trigger inflammasome assembly. These receptors sense danger signals including damage-associated molecular patterns and pathogen-associated molecular patterns (DAMPS and PAMPS respectively).
View Article and Find Full Text PDFExtracellular purines have a role in renal physiology and adaption to inflammation. However, inflammatory renal disease may be mediated by extracellular purines, resulting in renal injury. The role of purinergic signaling is dependent on the concentrations of extracellular purines.
View Article and Find Full Text PDFOur knowledge and understanding of the P2 receptor signalling system in the kidney have increased significantly in the last ten years. The broad range of physiological roles proposed for this receptor system and the variety of P2 receptor subtypes found in the kidney suggest that any disturbance of function may contribute to several pathological processes. So far, most reports of a possible pathophysiological role for this system in the kidney have focussed on polycystic kidney disease, where abnormal P2 receptor signalling might be involved in cyst expansion and disease progression, and on the P2X(7) receptor, a unique P2X subtype, which when activated enhances inflammatory cytokine release and production, and also cell death.
View Article and Find Full Text PDFThe P2X7 receptor is a ligand-gated cation channel that is normally expressed by a variety of immune cells, including macrophages and lymphocytes. Because it leads to membrane blebbing, release of IL-1beta, and cell death by apoptosis or necrosis, it is a potential therapeutic target for a variety of inflammatory diseases. Although the P2X7 receptor is usually not detectable in normal renal tissue, we previously reported increased expression of both mRNA and protein in mesangial cells and macrophages infiltrating the glomeruli in animal models of antibody-mediated glomerulonephritis.
View Article and Find Full Text PDFThe epithelial sodium channel (ENaC) plays a major role in the regulation of sodium balance and BP by controlling Na(+) reabsorption along the renal distal tubule and collecting duct (CD). ENaC activity is affected by extracellular nucleotides acting on P2 receptors (P2R); however, there remain uncertainties over the P2R subtype(s) involved, the molecular mechanism(s) responsible, and their physiologic role. This study investigated the relationship between apical P2R and ENaC activity by assessing the effects of P2R agonists on amiloride-sensitive current in the rat CD.
View Article and Find Full Text PDFBackground: The involvement of IL-1beta and other pro-inflammatory cytokines in most forms of glomerulonephritis is now well established. The P2X(7) receptor, an ATP-sensitive P2X receptor, functions not only as a non-selective cation channel, but it is also involved in the rapid processing and release of IL-1beta, apoptosis and necrotic cell death. Therefore, we wanted to investigate if expression of this receptor is altered in the glomeruli of rodent models of glomerulonephritis.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
January 2007
P2Y receptors couple to G proteins and either mobilize intracellular Ca(2+) or alter cAMP levels to modulate the activity of Ca(2+)- and cAMP-sensitive ion channels. We hypothesize that increased ion transport into the lumen of MDCK cysts can osmotically drive fluid movement and increase cyst size. Furthermore, activation of the adenylate cyclase/cAMP pathway may trigger cell proliferation via an extracellular signal-related kinase cascade.
View Article and Find Full Text PDFBackground: The molecular identification and characterization of the adenosine triphosphate (ATP)-sensitive family of P2 receptors is comparatively new. There are two main subgroups, each with several subtypes and widespread tissue distribution, including the kidney. A unique member of the P2X subgroup of P2 receptors is the ATP-gated ion channel P2X(7), which on activation can cause cell blebbing, cytokine release, and cell death by necrosis or apoptosis.
View Article and Find Full Text PDFThe precise steps leading from mutation of the polycystic kidney disease (PKD1) gene to the autosomal dominant polycystic kidney disease (ADPKD) phenotype remain to be established. Fluid accumulation is a requirement for cyst expansion in ADPKD, suggesting that abnormal fluid secretion into the cyst lumen might play a role in disease. In this study, we sought to establish a link between polycystin-1 (the PKD1 gene product) and ATP-stimulated Cl- secretion in renal tubule cells.
View Article and Find Full Text PDF