Publications by authors named "Clare E Robinson"

Groundwater transport of chloride (Cl) containing road salt deicers is an important contributor to salinization of fresh surface waters in temperate climates. While mass loading of salt to streams via groundwater has received greater recognition lately, only a few studies have demonstrated the unique risk posed by the direct discharge of salt-laden groundwater to aquatic life residing in the benthic zone (e.g.

View Article and Find Full Text PDF

Understanding fate and transport processes for per- and poly-fluoroalkyl substances (PFAS) is critical for managing impacted sites. "PFAS Salting Out" in groundwater, defined herein, is an understudied process where PFAS in fresh groundwater mixes with saline groundwater near marine shorelines, which increases sorption of PFAS to aquifer solids. While sorption reduces PFAS mass discharge to marine surface water, the fraction that sorbs to beach sediments may be mobilized under future salinity changes.

View Article and Find Full Text PDF

Phosphorus (P) that accumulates in agricultural riparian zones can be released under certain hydrological and biogeochemical conditions, thereby limiting the effectiveness of these zones in reducing P loads from field to stream. The study objective was to explore factors that may be contributing to, or limiting, high soluble reactive phosphorus (SRP) concentrations in the shallow aquifer of an alluvial upland riparian zone located in a continental climate. Field investigations including porewater sampling from six vertical nests, soil sampling, and continuous soil moisture, groundwater table, and redox measurements were conducted over 19 months.

View Article and Find Full Text PDF

Salinization of inland fresh surface waters in temperate climates is a growing concern due to increasing salt inputs from sources including chloride (Cl)-containing road salt de-icers, industrial waste, and landfill leachate. Groundwater pathways play an important role in the year-round delivery of Cl to streams, but quantifying this pathway, including spatiotemporal variability and amount of Cl mass stored in the subsurface, is challenging. The objective of this study was to demonstrate, evaluate, and compare the potential applications of the geoelectrical techniques - electromagnetics (EM) and direct current (DC) resistivity - for mapping salt contamination in shallow urban groundwater and characterizing the groundwater pathways delivering Cl to urban streams.

View Article and Find Full Text PDF

Quantifying the contribution of septic systems to contaminant, including nutrient, loading to streams is needed in many watersheds to inform water quality management programs. However, this quantification is challenging due to the distributed locations of septic systems and uncertainties regarding the pathways delivering effluent from septic systems (functioning and failing) to a stream. The objectives of this study were firstly to evaluate how septic effluent inputs to streams vary with stream discharge conditions for multiple subwatersheds with different characteristics (i.

View Article and Find Full Text PDF

Internal P stores in offshore lakebed sediments play an important role in lake nutrient dynamics. While P stores in nearshore aquifer sediments may also be important for nutrient dynamics, it is unclear whether P accumulates in these sediments, and if so, what factors control P accumulation and its potential later release from the sediments to nearshore waters. This knowledge gap was addressed by conducting field investigations at seven nearshore sites located along the shores of Lake Erie, Lake Huron and Lake Ontario, Canada, with more detailed dissolved and sediment phase characterization completed for two nearshore sites.

View Article and Find Full Text PDF

Metal oxides that form near sediment-water interfaces in marine and riverine settings are known to act as a sediment trap for pollutants of environmental concern (e.g., arsenic and mercury).

View Article and Find Full Text PDF

Bioretention systems are popular low impact development stormwater management features designed to remove pollutants, including phosphorus (P), from urban stormwater runoff. While the performance of bioretention systems in retaining P has been well studied, seasonal variability of P retention in field-scale systems installed in cold climates, including the influence of high road de-icing salt (sodium chloride) inputs, remains unclear. Two large field-scale bioretention systems installed in London, Ontario, Canada were monitored over their initial operational period to evaluate the seasonal trends in the retention of different forms of P in bioretention systems and the impact of high salt loading.

View Article and Find Full Text PDF

This study evaluates spatiotemporal variability in the behavior of septic system derived nutrients in a sandy nearshore aquifer and their discharge to a large lake. A groundwater nutrient-rich plume was monitored over a two-year period with the septic system origin of the plume confirmed using artificial sweeteners. High temporal variability in NO-N attenuation in the nearshore aquifer prior to discharge to the lake (42-96%) reveals the complex behavior of NO-N and potential importance of changing hydrological and geochemical conditions in controlling NO-N discharge to the lake.

View Article and Find Full Text PDF

Groundwater-coastal water interactions influence the fate of inorganic chemicals in nearshore aquifers and their flux to receiving coastal waters. This study evaluates the impact of variable wave conditions on the geochemical changes and distribution of mobile arsenic (As) in a nearshore aquifer. Field measurements in a sandy nearshore aquifer on Lake Erie, Canada, are presented with geochemical changes analyzed over a period of high waves.

View Article and Find Full Text PDF

Fecal indicator bacteria (FIB) are known to accumulate in foreshore beach sand and pore water (referred to as foreshore reservoir) where they act as a non-point source for contaminating adjacent surface waters. While guidelines exist for sampling surface waters at recreational beaches, there is no widely-accepted method to collect sand/sediment or pore water samples for FIB enumeration. The effect of different sampling strategies in quantifying the abundance of FIB in the foreshore reservoir is unclear.

View Article and Find Full Text PDF

Elevated fecal indicator bacteria (FIB) in beach sand and pore water represent an important nonpoint source of contamination to surface waters. This study examines the physical processes governing the accumulation and distribution of FIB in a beach aquifer. Field data indicate E.

View Article and Find Full Text PDF

Foreshore beach sands and pore water may act as a reservoir and nonpoint source of fecal indicator bacteria (FIB) to surface waters. This paper presents data collected at a fine sand beach on Lake Huron, Canada over three field events. The data show that foreshore sand erosion as wave height increases results in elevated Escherichia coli concentrations in surface water, as well as depletion of E.

View Article and Find Full Text PDF