Publications by authors named "Clare E Hunt"

Objectives: To evaluate the performance of cell-free DNA (cfDNA) screening for common fetal aneuploidies, choice of prenatal procedure, and chromosome conditions identified during pregnancy after low-risk cfDNA screening.

Method: A single-center prenatal cfDNA screening test was employed to detect trisomies 21, 18, and 13 (T21, T18, T13) and sex chromosome aneuploidies (SCAs). Test performance, choice of prenatal procedure, and cytogenetic results in pregnancies with low-risk cfDNA screening were reviewed.

View Article and Find Full Text PDF

Purpose: Balanced reciprocal translocation carriers are at increased risk of producing gametes with unbalanced forms of the translocation leading to miscarriage, fetal anomalies, and birth defects. We sought to determine if genome-wide cell-free DNA based noninvasive prenatal screening (gw-NIPS) could provide an alternative to prenatal diagnosis for carriers of these chromosomal rearrangements.

Methods: This pilot series comprises a retrospective analysis of gw-NIPS and clinical outcome data from 42 singleton pregnancies where one parent carried a balanced reciprocal translocation.

View Article and Find Full Text PDF

Zoe McDonald, BSc, was omitted from the list of article coauthors. Her name should have been included as the seventh author, following Clare Elizabeth Hunt. Her affiliation is Victorian Clinical Genetics Services, Parkville, Victoria, Australia.

View Article and Find Full Text PDF

PurposeTo describe our experience of offering simultaneous genetic carrier screening for cystic fibrosis (CF), fragile X syndrome (FXS), and spinal muscular atrophy (SMA).MethodsCarrier screening is offered through general practice, obstetrics, fertility, and genetics settings before or in early pregnancy. Carriers are offered genetic counseling with prenatal/preimplantation genetic diagnosis available to those at increased risk.

View Article and Find Full Text PDF

Since the discovery of the beta-secretase responsible for initiating the Alzheimer's amyloid cascade as a novel membrane-bound aspartic proteinase, termed 'beta-site amyloid precursor protein cleaving enzyme', 'aspartyl protease-2' or 'membrane-anchored aspartic proteinase of the pepsin family-2', huge efforts have been devoted to an understanding of its biology and structure in the subsequent decade. This has paid off in many respects, as it has been cloned, its structure solved, novel physiological substrates of the enzyme discovered, and numerous inhibitors of its activity developed in a relatively short space of time. The inhibition of beta-secretase activity in vivo remains one of the most viable strategies for the treatment of Alzheimer's disease, although progress in getting inhibitors to the clinic has been slow, partly as a consequence of its aspartic proteinase character, which poses considerable problems for the production of potent, selective and brain-accessible compounds.

View Article and Find Full Text PDF