Publications by authors named "Clare E Draper"

Nectin-1 is a member of a sub-family of immunoglobulin-like adhesion molecules and a component of adherens junctions. In the current study, we have shown that mice lacking nectin-1 exhibit defective enamel formation in their incisor teeth. Although the incisors of nectin-1-null mice were hypomineralized, the protein composition of the enamel matrix was unaltered.

View Article and Find Full Text PDF

This study investigated changes in the morphology and protein synthesis and protein and peroxidase secretion due to peptidergic and aminergic stimulation from rat lacrimal gland acinar cells of 3-5, 9, 12, 20 and 24 month old rats. There was a marked reduction in the presence of Golgi apparatus in the acinar cells of glands from the 24 month old rats coupled to dilatation and degeneration of rough endoplasmic reticulum, when compared to that in the acinar cells of glands from 3-5 and 12 month old rats. Following incorporation of tritiated leucine for 360 min (6 h), the amount of newly synthesised protein in acinar cells of the 12 month old rats was significantly (p < 0.

View Article and Find Full Text PDF

There is a significant body of evidence to suggest a physiological role for the CSF in both the developing and adult brain. Our recent studies suggest a critical role for this fluid in the developing brain of the hydrocephalic Texas (H-Tx) rat. A key feature of the foetal-onset hydrocephalus in this rat is obstruction in the flow and/or absorption of fluid that is associated with abnormal development of the cerebral cortex resulting in a reduction in the number of neuronal precursors generated.

View Article and Find Full Text PDF

The objectives of this study were to demonstrate the presence and nature of abnormal cortical development in a rat model of hydrocephalus, the hydrocephalic Texas (H-Tx) rat, and to test the hypothesis that the obstruction of CSF flow in affected animals can be linked to this effect. CSF is secreted continuously by the choroid plexus, located in the lateral, third and fourth ventricles. The fluid flows through the ventricular system, passing over all regions of germinal activity.

View Article and Find Full Text PDF